新型喷头式节点抗弯性能及其幂函数模型研究
Study on Bending Performance and Power Function Model of a New Sprayer Joint
传统碗式节点作为一种典型装配式节点,常应用于大跨度空间网格结构,但因其抗弯刚度较小,其应用范围受限。基于此,本文对传统碗式节点进行改进,提出了一种抗弯性能更好的喷头式节点。首先对喷头式节点进行设计,并对喷头式节点与碗式节点进行了纯弯作用下的有限元模拟,对比了二者的抗弯性能;然后,研究了周围螺栓半径、轴向压力和轴向拉力对喷头式节点抗弯性能的影响;最后,建立了喷头式节点弯矩-转角的幂函数模型,采用模拟退火算法得到了该模型曲率系数,利用多元非线性拟合方法确定了相关的模型参数,并对幂函数模型进行了评估。结果表明,与传统碗式节点相比,新型喷头式节点的初始刚度提高了21.71倍,极限弯矩值提高了5.42倍,而用钢量仅增加了15%;随着周围螺栓半径的增大,节点的初始刚度缓慢增大而极限弯矩值显著增加;随着轴向压力的增大,节点初始刚度和极限弯矩值也逐渐增大;增大轴向拉力会明显降低节点初始刚度和极限弯矩值,当轴向拉力达到一定值时,出现节点螺栓颈缩位置提前的现象,轴向力对节点的失效模式有较大影响;建立的幂函数模型能很好地吻合节点的实际弯矩-转角曲线,幂函数模型的各项特征参数及其影响系数拟合效果较好。所得结论可为该节点的工程应用与研究提供参考。
As a typical prefabricated joint, the traditional socket joint is used in large-span spatial grid structures. However, due to its small bending stiffness, its application range is limited. Based on this, the traditional socket is improved, and a sprayer joint with better bending performance is proposed. Firstly, the new sprayer joint is designed, and the finite element simulation of the sprayer joint and the socket joint under pure bending is carried out to compare their bending performance. Then, the influence of the radius of the surrounding bolt, the axial compression and the axial tension on the bending performance of the sprayer joint is studied. Finally, the power function model of moment-rotation curve of the sprayer joint is established, and the curvature coefficient of the model is obtained by simulated annealing algorithm. The relevant model parameters are determined by multivariate nonlinear fitting method, and the power function model is evaluated. The results show that the initial stiffness of the new sprayer joint is increased by 21.71 times, the ultimate bending moment is increased by 5.42 times, and the steel consumption is only increased by 15% compared with the traditional socket joint. With the increase of the radius of the surrounding bolt, the initial stiffness of the joint increases slowly and the ultimate bending moment increases significantly. With the increase of axial compression, the initial stiffness and ultimate bending moment of the joint also increase gradually. Increasing the axial tension will significantly reduce the initial stiffness and ultimate bending moment of the joint. When the axial tension reaches a certain value, the joint will appear obvious bolt necking in advance. The axial force has a great influence on the failure mode of the joint. The power function model can well fit the actual moment-rotation curve of the joint, and the characteristic parameters and their influence coefficients of the power function model are well fitted. The conclusions can provide references for the actual engineering design and calculation of the joint.
传统碗式节点 / 新型喷头式节点 / 抗弯性能 / 失效模式 / 幂函数模型 / 模拟退火算法
traditional socket joint / new sprayer joint / bending performance / failure mode / power function model / simulated annealing algorithm
| [1] |
FAN F,MA H H,CAO Z G,et al.Direct estimation of critical load for single-layer reticulated domes with semi-rigid joints[J].International Journal of Space Structure,2010,25(1):15-24.DOI:10.1260/0266-3511.25.1.15 |
| [2] |
张晓磊,李会军,喻晓晨,嵌入式毂节点刚度及其双线性模型研究[J].空间结构,2022,28(2):56-62,86.DOI:10.13849/j.issn.1006-6578.2022.02.056. |
| [3] |
ZHANG Xiaolei,LI Huijun,YU Xiaochen,et al.Research on stiffness and bilinear model of hub-shape inlay joints[J].Spatial Structures,2022,28(2):56-62,86.DOI:10.13849/j.issn.1006-6578.2022.02.056.(in Chinese) |
| [4] |
FAN F,MA H H,CHEN G B,et al.Experimental study of semi-rigid joint systems subjected to bending with and without axial force[J].Journal of Constructional Steel Research,2012,68(1):126-137.DOI:10.1016/j.jcsr.2011.07.020. |
| [5] |
LAN X Y,WARDENIER J,PACKER J A.Design of chord sidewall failure in RHS joints using steel grades up to S960[J].Thin-Walled Structures,2021,163:107605.DOI:10.1016/j.tws.2021.107605. |
| [6] |
SHI M Z,XIANG P,WU M E.Experimental investigation on bending and shear performance of two-way aluminum alloy gusset joints[J].Thin-Walled Structures,2018,122:124-136.DOI:10.1016/j.tws.2017.10.002. |
| [7] |
MA H H,JIANG Y Q,LI C R,et al.Performance analysis and comparison study of two aluminum alloy joint systems under out-of-plane and in-plane loading.An experimental and numerical investigation[J].Engineering Structures,2020,214:110643.DOI:10.1016/j.engstruct.2020.110643. |
| [8] |
MA H,WANG W,ZHANG Z,et al.Research on the static and hysteretic behavior of a new semi-rigid joint (BCP joint) for single-layer reticulated structures[J].Journal of the International Association for Shell and Spatial Structures,2017,58(2):159-172.DOI:10.20898/j.iass.2017.192.817. |
| [9] |
马越洋.新型齿式半刚性节点静动力性能研究[D].哈尔滨:哈尔滨工业大学,2016. |
| [10] |
MA Yueyang.Static and dynamic performance of gear semi-rigid joint systems[D].Harbin:Harbin Institute of Technology,2016.(in Chinese) |
| [11] |
ZHAO C Q,WANG G,ZHENG T T.Research on the hysteretic performance of flower-gusset composite joints for single-layer aluminium alloy lattice shell structures[J].Advances in Structural Engineering,2022,25(1):171-187.DOI:10.1177/13694332211046341. |
| [12] |
LI H J,TANIGUCHI Y.Effect of joint stiffness and size on stability of three-way single-layer cylindrical reticular shell[J].International Journal of Space Structures,2020,35(3):90-107.DOI:10.1177/0956059920931019. |
| [13] |
李会军,何双华.考虑杆件失稳的半刚接网架稳定性研究[J].空间结构,2019,25(4):18-26,34.DOI:10.13849/j.issn.1006-6578.2019.04.018. |
| [14] |
LI Huijun,HE Shuanghua.Stability of semi-rigid jointed space truss considering member instability[J].Spatial Structures,2019,25(4):18-26,34.DOI:10.13849/j.issn.1006-6578.2019.04.018.(in Chinese) |
| [15] |
范峰,马会环,沈世钊.半刚性螺栓球节点受力性能理论与试验研究[J].工程力学,2009,26(12):92-99. |
| [16] |
FAN Feng,MA Huihuan,SHEN Shizhao.Numerical simulation and experimeantal study on mechanical characters of bolt-ball joint system[J].Engineering Mechanics,2009,26(12):92-99.(in Chinese) |
| [17] |
张晓磊,李会军,陈旭,嵌入式毂节点刚度及其单层球面网壳承载力研究[J].工程力学,2022,39(9):179-190.DOI:10.6052/j.issn.1000-4750.2021.05.0388. |
| [18] |
ZHANG Xiaolei,LI Huijun,CHEN Xu,et al.Research on stiffness of hub-shape inlay joint and bearing capacity of single-layer spherical reticulated shell[J].Engineering Mechanics,2022,39(9):179-190.DOI:10.6052/j.issn.1000-4750.2021.05.0388.(in Chinese) |
| [19] |
郭小农,朱劭骏,熊哲,K6型铝合金板式节点网壳稳定承载力设计方法[J].建筑结构学报,2017,38(7):16-24.DOI:10.14006/j.jzjgxb.2017.07.003. |
| [20] |
GUO Xiaonong,ZHU Shaojun,XIONG Zhe,et al.Design method for buckling capacity of K6 single-layer reticulated shells with aluminum alloy gusset joints[J].Journal of Building Structures,2017,38(7):16-24.DOI:10.14006/j.jzjgxb.2017. 07.003.(in Chinese) |
| [21] |
CHEN W F,KISHI N.Semirigid steel beam-to-column connections:Data base and modeling[J].Journal of Structural Engineering,1989,115(1):105-119.DOI:10.1061/(asce)0733-9445(1989)115:1(105). |
| [22] |
FRYE M J,MORRIS G A.Analysis of flexibly connected steel frames[J].Canadian Journal of Civil Engineering,1975,2(3):280-291.DOI:10.1139/l75-026. |
| [23] |
WU F H,CHEN W F.A design model for semi-rigid connections[J].Engineering Structures,1990,12(2):88-97.DOI:10.1016/0141-0296(90)90013-I. |
| [24] |
喻晓晨,李会军,陈旭,螺栓球节点力学性能研究及弯矩-转角关系式的建立[J].建筑钢结构进展,2022,24(4):57-65.DOI:10.13969/j.cnki.cn31-1893.2022.04.008. |
| [25] |
YU Xiaochen,LI Huijun,CHEN Xu,et al.Mechanical properties of bolt-ball joints and establishment of moment-rotation relation formula[J].Progress in Steel Building Structures,2022,24(4):57-65.DOI:10.13969/j.cnki.cn31-1893.2022.04.008.(in Chinese) |
| [26] |
CHENAGHLOU M R,NOOSHIN H,HARDING J E.Proposed mathematical model for semi-rigid joint behaviour (M-θ) in space structures[J].International Journal of Space Structures,2014,29(2):71-80.DOI:10.1260/0266-3511.29.2.71. |
| [27] |
MA H H,REN S,FAN F.Parametric study and analytical characterization of the bolt-column (BC) joint for single-layer reticulated structures[J].Engineering Structures,2016,123:108-123.DOI:10.1016/j.engstruct.2016.05.037. |
| [28] |
蔡健,贺盛,姜正荣,单层网壳结构稳定分析中初始几何缺陷最大值的研究[J].建筑结构学报,2015,36(6):86-92.DOI:10.14006/j.jzjgxb.2015.06.011. |
| [29] |
CAI Jian,HE Sheng,JIANG Zhengrong,et al.Investigation on maximum value of initial geometric imperfection in stability analysis of single layer reticulated shells[J].Journal of Building Structures,2015,36(6):86-92.DOI:10.14006/j.jzjgxb.2015.06.011.(in Chinese) |
| [30] |
张中昊,付强,范峰.斜拉杆增强温室双向网格型单层柱面网壳稳定性[J].农业工程学报,2016,32(10):172-179.DOI:10.11975/j.issn.1002-6819.2016.10.024. |
| [31] |
ZHANG Zhonghao,FU Qiang,FAN Feng.Tension members strengthening stability of two-way grid single-layer cylindrical shell in greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(10):172-179.DOI:10.11975/j.issn.1002-6819.2016.10.024.(in Chinese) |
| [32] |
戴国欣.钢结构(第五版)[M].武汉:武汉理工大学出版社,2019:64. |
| [33] |
DAI Guoxin.Steel structures (5th Edition) [M].Wuhan:Wuhan University of Technology Press,2019:64.(in Chinese) |
| [34] |
缪晓宾,陈昊.模拟退火算法优化转运小车转向的梯形机构设计[J].机械设计与研究,2023,39(5):67-71.DOI:10.13952/j.cnki.jofmdr.2023.0195. |
| [35] |
MIAO Xiaobin,CHEN Hao.Optimization of trapezoidal mechanism design for transfer trolley steering by simulated annealing algorithm[J].Machine Design & Research,2023,39(5):67-71.DOI:10.13952/j.cnki.jofmdr.2023.0195.(in Chinese) |
| [36] |
YANG K,DUAN Q X,WANG Y H,et al.Transiently chaotic simulated annealing based on intrinsic nonlinearity of memristors for efficient solution of optimization problems[J].Science Advances,2020,6(33):eaba9901.DOI:10.1126/sciadv.aba9901. |
国家自然科学基金(51408490)
陕西省自然科学基础研究计划(2022JM-234)
国家级大学生创新创业训练计划(202310712067)
/
| 〈 |
|
〉 |