火灾后低合金结构钢低周疲劳性能演化机理研究
顾跃跃 , 霍红伟 , 任海辉 , 郭煜斌 , 戴书洋 , 方成
建筑钢结构进展 ›› 2025, Vol. 27 ›› Issue (07) : 94 -107.
火灾后低合金结构钢低周疲劳性能演化机理研究
Post-Fire Low-Cycle Fatigue Mechanism of Low-Alloy Structural Steel
高地震烈度区的钢结构建筑在服役期间可能遭受火灾损伤以及后续抵御地震作用的考验。文中采用试验探究结合理论分析的方法,从宏观、细观及微观多个层次出发系统探索了钢材在火灾损伤后的低周疲劳性能演化机理。并开展了60组Q345低合金结构钢低周疲劳试验,对其设置了不同的加热温度与冷却方式,采用递增级循环与常应变幅循环两种加载方式。试验后,采用电镜扫描和金相观察等方式分析材料的断裂失效机理。结果表明:中大型火灾(峰值温度750 ℃或1 000 ℃)后采用降温速率极快的浸水冷却对Q345钢材的循环加载性能影响显著。在该条件下,高强度、低延性的马氏体发生转变,致使材料循环应力增大、延性降低及疲劳寿命锐减,这表明在中大型火灾中采用快速降温的方式对灾后钢结构的剩余抗震性能极其不利。其他加热冷却过程对Q345钢材的循环加载行为和低周疲劳性能影响有限。
Most steel structures in high seismicity regions may continue serving after the occurrence of a non-critical fire event. In this paper, the low-cycle fatigue properties of Q345 steel after fire damage are systematically studied from macro and micro levels by the combination of experimental exploration with theoretical analysis. A total of 60 Q345 carbon steel specimens are examined, which are heated to different temperatures and cooled by different ways, followed by either incremental-amplitude cyclic loading or constant-amplitude low-cycle/extremely low-cycle fatigue loading. The typical fracture failure mechanism of the specimens is analyzed by scanning electron microscope (SEM) and metallurgical microscopy (MM). The test results show that water immersion cooling with a rapid cooling speed following a medium or large fire (heated to 750 ℃ or 1 000 ℃) has a significant impact on the cyclic behavior of the Q345 steel. In these cases, the formation of martensite with high strength and poor ductility results in an increase in the cyclic stress, a decrease in the ductility and a sharp reduction of the fatigue life. These phenomena indicate that the seismic performance of steel structures may be significantly compromised after rapid cooling from a medium or large fire. Other heating-cooling processes have less pronounced effects on the hysteretic and low-cycle fatigue properties of the material.
多灾害 / 火灾 / 低合金结构钢低周疲劳性能 / 电镜扫描 / 金相观察 / 滞回性能
multi-hazard / fire / low-alloy structural steel low-cycle fatigue (LCF) performance / scanning electron microscope (SEM) / metallurgical microscopy (MM) / hysteretic behavior
| [1] |
WEI F,FANG C,WU B.Fire resistance of concrete-filled steel plate composite (CFSPC) walls[J].Fire Safety Journal,2017,88:26-39.DOI:10.1016/j.firesaf.2016.12.008. |
| [2] |
李宏男,郑晓伟,李超.高性能结构抗多次多种灾害全寿命性能分析与设计理论研究进展[J].建筑结构学报,2019,40(2):56-69.DOI:10.14006/j.jzjgxb.2019.02.004. |
| [3] |
LI Hongnan,ZHENG Xiaowei,LI Chao.Research progress on life-cycle multihazard-based design theory for high-performance structures[J].Journal of Building Structures,2019,40(2):56-69.DOI:10.14006/j.jzjgxb.2019.02.004.(in Chinese) |
| [4] |
张喜刚,田雨,陈艾荣.多灾害作用下桥梁设计方法研究综述[J].中国公路学报,2018,31(9):7-19.DOI:10.3969/j.issn.1001-7372.2018.09.002. |
| [5] |
ZHANG Xigang,TIAN Yu,CHEN Airong.Review of bridge design method for multiple hazards[J].China Journal of Highway and Transport,2018,31(9):7-19.DOI:10.3969/j.issn.1001-7372.2018.09.002.(in Chinese) |
| [6] |
BEHNAM B.Structural response of vertically irregular tall moment-resisting steel frames under pre- and post-earthquake fire[J].The Structural Design of Tall and Special Buildings,2016,25(12):543-557.DOI:10.1002/tal.1271. |
| [7] |
SUWONDO R,GILLIE M,CUNNINGHAM L,et al.Effect of earthquake damage on the behaviour of composite steel frames in fire[J].Advances in Structural Engineering,2018,21(16):2589-2604.DOI:10.1177/1369433218761138. |
| [8] |
BEHNAM B,ABOLGHASEMI S.Post-earthquake fire performance of a generic fireproofed steel moment resisting structure[J].Journal of Earthquake Engineering,2021,25(13):2579-2604.DOI:10.1080/13632469.2019.1628128. |
| [9] |
FANG C,IZZUDDIN B A,ELGHAZOULI A Y,et al.Robustness of multi-storey car parks under localised fire:Towards practical design recommendations[J].Journal of Constructional Steel Research,2013,90:193-208.DOI:10.1016/j.jcsr.2013.08.004. |
| [10] |
FANG C,IZZUDDIN B A,ELGHAZOULI A Y,et al.Simplified energy-based robustness assessment for steel-composite car parks under vehicle fire[J].Engineering Structures,2013,49:719-732.DOI:10.1016/j.engstruct.2012.12.036. |
| [11] |
WANG W,FANG C,ZHAO Y S,et al.Self-centering friction spring dampers for seismic resilience[J].Earthquake Engineering & Structural Dynamics,2019,48(9):1045-1065.DOI:10.1002/eqe.3174. |
| [12] |
FANG C,WANG W,HE C,et al.Self-centering behaviour of steel and steel-concrete composite connections equipped with NiTi SMA bolts[J].Engineering Structures,2017,150:390-408.DOI:10.1016/j.engstruct.2017.07.067. |
| [13] |
FANG C,YAM M C H,LAM A C C,et al.Cyclic performance of extended end-plate connections equipped with shape memory alloy bolts[J].Journal of Constructional Steel Research,2014,94:122-136.DOI:10.1016/j.jcsr.2013.11.008. |
| [14] |
FANG C,WANG W,SHEN D Y.Development and experimental study of disc spring–based self-centering devices for seismic resilience[J].Journal of Structural Engineering,2021,147(7):04021094.DOI:10.1061/(asce)st.1943-541x.0003058. |
| [15] |
CHEN J B,FANG C,WANG W,et al.Variable-friction self-centering energy-dissipation braces (VF-SCEDBs) with NiTi SMA cables for seismic resilience[J].Journal of Constructional Steel Research,2020,175:106318.DOI:10.1016/j.jcsr.2020. 106318. |
| [16] |
WANG W,FANG C,SHEN D Y,et al.Performance assessment of disc spring-based self-centering braces for seismic hazard mitigation[J].Engineering Structures,2021,242:112527.DOI:10.1016/j.engstruct.2021.112527. |
| [17] |
张旭丹.地震次生火灾救灾数值模拟与优化策略分析[D].大连:大连理工大学,2009. |
| [18] |
ZHANG Xudan.Numerical simulation and optimization strategy on disaster relief of post-earthquake fire[D].Dalian:Dalian University of Technology,2009.(in Chinese) |
| [19] |
陈炫维,李宏男,王东升,主余震下近海钢筋混凝土桥墩全寿命抗震分析[J].地震工程与工程振动,2015,35(4):145-154.DOI:10.13197/j.eeev.2015.04.145.chenxw.017. |
| [20] |
CHEN Xuanwei,LI Hongnan,WANG Dongsheng,et al.Life-cycle seismic performance analysis of offshore RC bridge piers under mainshock and aftershock[J].Earthquake Engineering and Engineering Dynamics,2015,35(4):145-154.DOI:10.13197/j.eeev.2015.04.145.chenxw.017.(in Chinese) |
| [21] |
陈素文,李国强.地震次生火灾的研究进展[J].自然灾害学报,2008,17(5):120-126.DOI:10.3969/j.issn.1004-4574.2008. 05.020. |
| [22] |
CHEN Suwen,LI Guoqiang.Advance in research on secondary fire of earthquake[J].Journal of Natural Disasters,2008,17(5):120-126.DOI:10.3969/j.issn.1004-4574.2008.05.020.(in Chinese) |
| [23] |
李宏男,李钢,郑晓伟,工程结构在多灾害耦合作用下的研究进展[J].土木工程学报,2021,54(5):1-14.DOI:10.15951/j.tmgcxb.2021.05.001. |
| [24] |
LI Hongnan,LI Gang,ZHENG Xiaowei,et al.Research progress in engineering structures subject to multiple hazards[J].China Civil Engineering Journal,2021,54(5):1-14.DOI:10.15951/j.tmgcxb.2021.05.001.(in Chinese) |
| [25] |
ZHOU F,LI L.Experimental study on hysteretic behavior of structural stainless steels under cyclic loading[J].Journal of Constructional Steel Research,2016,122:94-109.DOI:10.1016/j.jcsr.2016.03.006. |
| [26] |
WANG M,FAHNESTOCK L A,QIAN F X,et al.Experimental cyclic behavior and constitutive modeling of low yield point steels[J].Construction and Building Materials,2017,131:696-712.DOI:10.1016/j.conbuildmat. 2016.11.035. |
| [27] |
SHI G,GAO Y,WANG X,et al.Mechanical properties and constitutive models of low yield point steels[J].Construction and Building Materials,2018,175:570-587.DOI:10.1016/j.conbuildmat.2018.04.219. |
| [28] |
班慧勇,朱俊成,施刚,不同复合比下不锈钢复合钢材循环本构模型研究[J].土木工程学报,2019,52(10):67-74.DOI:10.15951/j.tmgcxb.20190709.001. |
| [29] |
BAN Huiyong,ZHU Juncheng,SHI Gang,et al.Study on cyclic constitutive model of stainless-cladding bimetallic steel with different cladding ratios[J].China Civil Engineering Journal,2019,52(10):67-74.DOI:10.15951/j.tmgcxb.20190709.001.(in Chinese) |
| [30] |
施刚,王飞,戴国欣,Q460D高强度结构钢材循环加载试验研究[J].土木工程学报,2012,45(7):48-55.DOI:10.15951/j.tmgcxb.2012.07.018. |
| [31] |
SHI Gang,WANG Fei,DAI Guoxin,et al.Experimental study of high strength structural steel Q460D under cyclic loading[J].China Civil Engineering Journal,2012,45(7):48-55.DOI:10.15951/j.tmgcxb.2012.07.018.(in Chinese) |
| [32] |
REZAIEE-PAJAND M,SINAIE S.On the calibration of the Chaboche hardening model and a modified hardening rule for uniaxial ratcheting prediction[J].International Journal of Solids and Structures,2009,46(16):3009-3017.DOI:10.1016/j.ijsolstr.2009.04.002. |
| [33] |
CHABOCHE J L.A review of some plasticity and viscoplasticity constitutive theories[J].International Journal of Plasticity,2008,24(10):1642-1693.DOI:10.1016/j.ijplas.2008.03.009. |
| [34] |
CHEN Z H,LU J,LIU H B,et al.Experimental study on the post-fire mechanical properties of high-strength steel tie rods[J].Journal of Constructional Steel Research,2016,121:311-329.DOI:10.1016/j.jcsr.2016.03.004. |
| [35] |
石永久,王萌,王元清.循环荷载作用下结构钢材本构关系试验研究[J].建筑材料学报,2012,15(3):293-300.DOI:10.3969/j.issn.1007-9629.2012.03.001. |
| [36] |
SHI Yongjiu,WANG Meng,WANG Yuanqing.Experimental study of structural steel constitutive relationship under cyclic loading[J].Journal of Building Materials,2012,15(3):293-300.DOI:10.3969/j.issn.1007-9629.2012.03.001.(in Chinese) |
| [37] |
HAI L T,SUN F F,ZHAO C,et al.Experimental cyclic behavior and constitutive modeling of high strength structural steels[J].Construction and Building Materials,2018,189:1264-1285.DOI:10.1016/j.conbuildmat.2018.09.028. |
| [38] |
DING F X,ZHANG C,YU Y J,et al.Hysteretic behavior of post fire structural steels under cyclic loading[J].Journal of Constructional Steel Research,2020,167:105847.DOI:10. 1016/j.jcsr.2019.105847. |
| [39] |
LI W,CHEN H.Hysteretic performance of structural steels after exposure to elevated temperatures[J].Thin-Walled Structures,2023,191:111019.DOI:10.1016/j.tws.2023.111019. |
| [40] |
薛暄译,王斐,石宇,火灾后Q690高强钢超低周疲劳性能研究[J].建筑结构学报,2023,44(6):119-128.DOI:10.14006/j.jzjgxb.2022.0631. |
| [41] |
XUE Xuanyi,WANG Fei,SHI Yu,et al.Study on post-fire ultra-low cycle fatigue properties of Q690 high strength steel post fire[J].Journal of Building Structures,2023,44(6):119-128.DOI:10.14006/j.jzjgxb.2022.0631.(in Chinese) |
| [42] |
HUA J M,WANG F,XUE X Y,et al.Post-fire ultra-low cycle fatigue properties of high-strength steel viadifferent cooling methods[J].Thin-Walled Structures,2023,183:110406.DOI:10.1016/j.tws.2022.110406. |
| [43] |
DAI S Y,LI C B,GU Y Y,et al.Post-fire mechanical behavior of iron-based shape memory alloy used for structural damping[J].Journal of Constructional Steel Research,2024,221:108920.DOI:10.1016/j.jcsr.2024.108920. |
| [44] |
国家市场监督管理总局,国家标准化管理委员会.金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S].北京:中国标准出版社,2021. |
| [45] |
State Administration for Market Regulation,Standardization Administration of the People's Republic of China.Metallic Materials—Tensile Testing—Part 1:Method of Test at Room Temperature:GB/T 228.1—2021[S].Beijing:Standards Press of China,2021.(in Chinese) |
| [46] |
中华人民共和国国家质量监督检疫总局,中国国家标准化管理委员会.金属材料轴向等幅低循环疲劳试验方法:GB/T 15248—2008[S].北京:中国标准出版社,2008. |
| [47] |
General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of China.The Test Method for Axial Loading Constant-Amplitude Low-Cycle Fatigue of Metallic Materials:GB/T 15248—2008[S].Beijing:Standards Press of China,2008.(in Chinese) |
| [48] |
施刚,高阳,王珣,低屈服点钢低周疲劳性能研究[J].土木工程学报,2019,52(1):20-26,52.DOI:10.15951/j.tmgcxb. 2019.01.003. |
| [49] |
SHI G,GAO Y,WANG X,et al.Low cycle fatigue properties of low yield point steels[J].China Civil Engineering Journal,2019,52(1):20-26,52.DOI:10.15951/j.tmgcxb.2019.01.003.(in Chinese) |
国家自然科学基金(52378177)
国家自然科学基金(52078359)
上海市“曙光计划”(22SG18)
/
| 〈 |
|
〉 |