植物与微生物的共生关系在自然界中普遍存在,其中菌根共生是陆地生态系统中植物-微生物相互作用的典范。丛枝菌根(arbuscular mycorrhiza,AM)真菌属于球囊菌门(Glomeromycota),能与70%~90%的陆生植物形成共生关系,其分布范围远超外生菌根(ectomycorrhiza,ECM)、杜鹃花菌根(ericoid mycorrhiza,ERM)和兰科菌根(orchid mycorrhiza,ORM)
[1]。早期的研究
[2-5]发现,帮助宿主植物获取养分,特别是磷元素,被认为是AM共生最具代表性的特征。AM真菌可以从根部延伸出5~12 cm的根外菌丝网络(
图1),进入根系无法到达的土壤微孔,在根际营养枯竭区以外的土壤中获取磷,突破根系的空间限制,以满足植物的营养需求,一些真菌甚至提供植物获得总磷的70%~100%
[2-5]。为了维持菌根共生,植物需要将大量的光合产物分配至根系,并以糖和脂肪酸的形式传递给AM真菌来完成其生命周期
[6-7]。AM共生的发展是一个高度动态的过程,包括共生前交流、接触和穿透根系外皮层细胞、丛枝的形成及泡囊发育。在内皮层细胞中,根内菌丝能够形成高度分枝且被特殊的植物质膜和真菌质膜包裹的丛枝结构,进而形成丛枝周腔,构成植物与AM真菌物质交换的关键区域
[8-9]。根外菌丝细胞膜高亲和力转运蛋白能够从土壤中大量吸收无机磷酸盐,并在体内聚合成聚磷酸盐后以1.7~2.0 mm·h
-1的速率向植物转运
[10]。AM真菌不仅能吸收土壤溶液中的无机正磷酸盐,还能活化土壤中大量存在的难溶性磷。磷是植物生长发育必需的大量营养元素之一,在农田生态系统中,周期性施用磷肥是维持作物生产的重要保障。然而,施入土壤的大量磷素通常被土壤固定,导致当季磷肥利用率显著降低。从1980年到2012年,我国农田土壤平均磷素(P
2O
5)累积量为1 926 kg·hm
-2[11],既造成磷矿资源的浪费,又存在环境风险。AM真菌根外菌丝虽然能分泌低分子量有机酸,溶解土壤磷酸铁、磷酸钙等难溶性无机磷
[12-13],但AM真菌自身对有机磷的直接降解能力有限,需依赖细菌协作活化土壤有机磷。这种互作关系的调控可以提高土壤磷利用效率,是实现养分高效利用和节约磷肥的重要途径。
1 AM真菌活化土壤有机磷的功能
土壤有机磷通常占总磷的30%~65%
[14],AM真菌能够利用土壤有机磷。早在20世纪70年代,有学者就发现森林生态系统中存在“内生菌根”菌丝生长进入凋落叶的现象,提出真菌可以获取并将凋落叶中矿物质养分转移到宿主植物的“直接矿物循环”假说
[15]。2000年以来,稳定同位素标记试验提供了明确的证据,证明AM真菌能够加速有机物质分解过程,土壤有机物中高达1/3的氮可被AM真菌捕获并转移到宿主植物中
[16-17]。原位组织化学定位技术进一步揭示,AM真菌菌丝际存在显著的磷酸酶活性,该酶可以有效矿化土壤有机磷
[18-19]。然而,近年来基于比较基因组学的研究
[20-22]发现,已测序的AM真菌(如
Rhizophagus irregularis,
Gigaspora margarita和
Gigaspora rosea)基因组中仅含有极少量编码碳水化合物活性酶(CAZymes)的基因,这意味着AM真菌似乎无法产生裂解有机分子所需的裂解酶,导致其缺失直接降解高分子量有机底物的能力。
在缺乏其他土壤微生物的情况下,AM真菌难以有效矿化并获取有机结合态的有机物质
[23];而在其他土壤微生物存在的情况下,AM真菌可以加速复杂有机物质的降解
[16]。AM真菌不能单独发挥作用,AM真菌对有机物质的降解是由其他微生物介导的。实际上AM真菌的根外菌丝和孢子在土壤中并非孤立存在,其内部和表面常伴有细菌的定殖(
图2A、2B)
[24-25]。AM真菌利用植物来源的碳进行代谢,产生小分子化合物并分泌到土壤中,进而影响周围土壤环境,形成在物理、化学和生物学特性上都与土体土显著不同的特殊微域,被称为菌丝际
[26]。菌丝际细菌以菌丝分泌物为碳源和能源,协助AM真菌矿化有机结合的养分。其中的解磷细菌是AM真菌的合作伙伴,它们通过分泌磷酸酶矿化土壤有机磷,进而提高AM真菌对磷的有效性
[27]。因此,AM真菌与解磷细菌之间形成了独特的互惠关系:双方通过提供对方所需的碳源或磷源实现互惠合作,协同促进土壤中有机磷的矿化,影响磷素的生物地球化学循环
[28-30]。
2 AM真菌通过菌丝分泌物与菌丝际细菌合作活化有机磷
土壤细菌作为生态系统的分解者,对全球碳和养分循环及生态系统的功能具有重要影响。1 g表层土壤含有超过10
9个细菌和古菌细胞
[31]。在缺乏容易获得的碳输入的情况下,这些细菌通常处于不活跃或休眠状态,代谢减缓,这削弱了它们参与许多元素的生物地球化学过程的能力
[31]。而AM真菌菌丝分泌物中含有丰富的碳源,能够促进细菌生长,刺激细菌代谢活性
[32]。这些分泌物主要包含糖类(如果糖、葡萄糖、海藻糖)、羧酸盐(如柠檬酸、琥珀酸)和氨基酸(天冬氨酸、谷氨酸、亮氨酸)等,在AM真菌与菌丝际细菌协同矿化有机磷的过程中发挥关键作用
[26]。研究
[33]表明,AM真菌
Rhizophagus irregularis的分泌物可以诱导细菌
Rahnella aquatilis柠檬酸合成酶的基因表达。此外,菌丝分泌物中的糖类物质不仅能改变细菌群落结构,还能显著提高磷酸酶活性
[34-35]。果糖可以作为信号分子诱导细菌磷酸酶基因表达,激活细菌II型与IV型分泌系统,分泌更多的磷酸酶进入土壤,加强有机磷的矿化
[36]。这种基于菌丝分泌物的碳-磷交换机制是维持AM真菌与解磷细菌协同关系的重要基础,其强度和作用方式受多种因素调控,包括宿主植物种类、AM真菌类型及土壤养分水平等。例如,土壤C∶P摩尔比直接影响AM真菌与细菌之间的互作关系。当土壤有效磷较低时,尽管细菌能够活化有机磷,但由于细菌自身对磷的需求,它们与AM真菌之间可能产生竞争,导致土壤中的磷被生物固定,从而无法被AM真菌有效吸收。在盆栽试验中,同时接种AM真菌与解磷细菌虽然会减少土壤中有机磷矿化水平,但与单独接种AM真菌相比,植物地上部磷含量并无显著变化,而菌丝际土壤中的微生物生物量磷含量显著增加
[30]。在培养皿试验中发现,AM真菌与解磷细菌相互作用对植物的益处仅在提供额外的磷时才会显现
[30]。原因是外源添加的适量无机磷可有效降低土壤C∶P摩尔比,使AM真菌和细菌转为合作,进而促进土壤磷的矿化
[30]。AM真菌和细菌合作机制的相关试验,通常考虑单个细菌物种;这种方法旨在简化过程,但它造成了一种在自然界中很少发生的情况。在自然环境中,微生物在复杂的群落中茁壮成长,其中单个物种的适应性与功能取决于其与种群中其他物种的相互作用。研究
[26]表明,菌丝际细菌群落包含Acidobacteria、Actinobacteria、Firmicutes等26个门类。AM真菌不仅影响细菌群落的结构和组成,刺激土壤细菌的磷活化功能
[37];还能够在群落水平上增加含有磷酸酶编码基因细菌相对丰度,改变菌丝际微生物组功能特征,最终增强植物对磷的吸收效率
[38]。此外,菌丝际细菌群落中存在一些保守的核心微生物组,这些微生物在土壤有机磷矿化过程中发挥着重要功能
[39-40],AM真菌能够特异性富集链霉菌(
Streptomyces)作为关键功能细菌,这些微生物直接或间接驱动菌丝际细菌群落的组装过程和功能发挥
[41]。
3 AM真菌运输菌丝际细菌到养分斑块活化有机磷
AM真菌与解磷细菌的合作关系不仅限于菌丝分泌物的碳供应,AM真菌还为细菌的迁移提供了独特的“移动桥梁”,由于土壤中磷的分布具有空间异质性,这种特殊的互作方式进一步强化了双方协同矿化土壤有机磷的功能(
图2C、
2D)。土壤颗粒间存在大量孔隙,导致绝大多数土壤微生物仅能占据不到1%的有效土壤表面
[42],而AM真菌菌丝在土壤中形成大量菌丝网络,这些菌丝可以跨越空隙从而给微生物提供良好的传播路线。早期Kohlmeier等
[43]研究发现,尖孢镰刀菌(
Fusarium oxysporum)真菌菌丝上的细菌迁移与菌丝亲水性有很大关联,只有亲水性真菌(即能够在菌丝表面形成水膜的真菌)有效促进细菌运动。之后有研究
[44]证实与菌丝密切相关的细菌也能够借助AM真菌菌丝实现从根际到菌丝际的迁移。这种细菌依靠AM真菌菌丝的迁移机制主要依赖于2个方面:一方面,AM真菌菌丝网络是土壤中水分的重要移动载体
[45],这些根外菌丝作为固体是水分的良好附着面,水分在菌丝上形成连续的水膜或水滴,湿润的菌丝在土壤中延伸数厘米,不仅为微生物提供了保护环境,还充当细菌运输的必要介质
[46-47];另一方面,AM真菌菌丝释放的分泌物是招募特定微生物组的主要驱动力,可能促进细菌的趋化活性
[35,48-50],葡萄糖等化合物是菌丝分泌物组成成分,这些物质使
Sinorhizobium meliloti能够沿着
Rhizophagus irregularis菌丝和远距离豆科(Fabaceae)植物宿主形成根瘤
[51]。
Sharma等
[47]在体外条件下使用毛根分隔体系试验证明,水膜和菌丝分泌物的存在驱动解磷细菌沿着
Rhizophagus irregularis菌丝运动。细菌在游动或涌动的速度上存在显著差别,慢速涌动细菌在48 h内没有定殖整个培养皿,而快速涌动细菌能够在48 h或更短的时间内定殖整个培养皿,这表明细菌在沿菌丝移动过程中可以表现出差异
[47]。Jiang等
[52]利用毛根-AM真菌纯培养体系,将培养皿隔为根室和菌丝室,菌丝室间留有空隙,细菌只能沿着菌丝移动才能穿过,结果表明水生拉恩式菌(
Rahnella aquatilis)可沿着菌丝到达远处的隔室,而作为对照的无鞭毛细菌则无法到达远处的隔室,证实水和菌丝分泌物的存在及细菌的游动能力是解磷细菌沿着AM菌丝移动的必要条件。总之,这种AM真菌介导的解磷细菌迁移机制,显著增强了两者协同矿化土壤有机磷的效率。
4 AM真菌与菌丝际微生物互作的调控
AM真菌与细菌互作活化和利用土壤累积磷的过程受多种因素影响,包括宿主植物、AM真菌类型及土壤养分水平等。AM真菌与植物根系共生关系建立过程中,存在许多信号分子交流:根系分泌的类黄酮、N-乙酰葡萄糖胺及独脚金内酯等信号物质会刺激AM真菌孢子萌发、菌丝生长和分枝,从而确保AM真菌与宿主植物根系接触形成共生,同时,AM真菌释放的菌根因子例如壳寡糖(如槲皮素、短链几丁质低聚物)能触发宿主植物的共生信号
[1],为AM真菌和细菌的互作调控提供保障
[53-55]。
此外,AM真菌与细菌之间的合作关系受土壤C:P摩尔比调控
[56],适量添加无机磷能够有效缓解菌根真菌和细菌之间的磷竞争,促使AM真菌和细菌形成合作关系,协同矿化土壤中难溶性磷,从而提高菌根对植物磷吸收的贡献率。菌丝分泌物作为AM真菌-细菌互作的关键介质,其成分调控对土壤解磷细菌具有重要影响。通过向土壤中添加菌丝分泌物的主要成分(如葡萄糖、果糖和海藻糖)能够显著改变菌丝际微生物群落结构,提高具有
phoD基因功能细菌数量,加速有机磷矿化过程
[34-35]。其中,添加果糖处理表现出最高的土壤磷酸酶活性和最强的菌丝际微生物群落有机磷矿化能力
[41]。
5 总结与展望
AM真菌是植物获取土壤磷的重要途径,其根外菌丝在拓展根系吸收面积的同时,还与土壤解磷细菌形成矿化有机磷的协同关系:一方面,菌丝分泌物为细菌提供碳源并特异性招募解磷细菌;另一方面,菌丝还能作为“移动桥梁”促进细菌迁移,应对土壤有机磷的异质性。上述协同作用机制为调控AM真菌-解磷细菌互作过程和提高土壤磷利用效率提供理论依据。然而,AM真菌和细菌合作机制的相关研究多使用单个细菌物种,导致无法深入认识AM真菌菌丝际与细菌群落水平的互作规律。此外,无论是菌丝分泌物还是菌丝的细菌转运研究,大多采用毛根-AM真菌培养体系,与自然条件有较大差距。在调控AM真菌与细菌互作中,由于菌丝扩展范围大,田间菌丝收集困难,实现精准调控与观测AM真菌-细菌互作稳定性仍然面临挑战。近期,一些新的研究方法,如量子点技术、拉曼光谱检测和高通量培养组学等逐渐应用于菌丝际研究,这对探究AM真菌-细菌互作机制与调控至关重要。深入研究AM真菌-解磷细菌的互作过程与作用机制,可为提高土壤磷素利用效率、缓解农业磷资源浪费提供重要的理论依据和实践指导。