基于滚动轴承故障诊断的类间排斥松弛判别迁移学习

李锋, 王腾, 汤宝平, 田大庆

工程科学与技术 ›› 2022, Vol. 54 ›› Issue (03) : 209 -219.

PDF
工程科学与技术 ›› 2022, Vol. 54 ›› Issue (03) : 209 -219. DOI: 10.15961/j.jsuese.202100242

基于滚动轴承故障诊断的类间排斥松弛判别迁移学习

作者信息 +

Author information +
文章历史 +
PDF

摘要

针对滚动轴承实际变工况条件使得新工况样本的类标签很难甚至无法获取,导致故障诊断准确率较低的问题,提出基于类间排斥松弛判别迁移学习(inter-class repulsive slack discriminant transfer learning,IRSDTL)的故障诊断方法。在提出的IRSDTL方法中,首先,构造非负扩展松弛矩阵,将严格二进制标签矩阵转化为扩展松弛标签矩阵,增加辅助域中不同类标签向量之间的距离,同时使公共子空间维数不再局限于类标签的数量,进而减少辅助域分类误差,提高IRSDTL方法的泛化能力;其次,引入联合分布差异,减小辅助域和目标域之间的差异,以更好地实现两域的跨域迁移学习;然后,构造类间排斥力项来增大两域中某类标签子域样本到其他类标签子域样本之间的距离,以促进类判别学习;最后,采用交替方向乘子法(alternating direction multiplier,ADM)对IRSDTL的整体框架进行优化,便捷地得到IRSDTL参数的最优解。根据以上步骤,IRSDTL方法能在新工况样本的类标签不存在的情况下,仅利用历史工况中的有标签样本对新工况待测样本进行较高准确率的类判别。滚动轴承故障诊断实验结果表明:所提出的基于IRSDTL的故障诊断方法具有比其他4种迁移方法更高的故障诊断准确率;同时,所提出的方法将3类故障误诊为正常状态和将正常状态误诊为3类故障的误诊率都很低,从而验证了所提出方法的有效性和实用性。

关键词

滚动轴承 / 故障诊断 / 变工况 / 类间排斥松弛判别迁移学习 / 类间排斥力项

Key words

引用本文

引用格式 ▾
李锋, 王腾, 汤宝平, 田大庆. 基于滚动轴承故障诊断的类间排斥松弛判别迁移学习[J]. 工程科学与技术, 2022, 54(03): 209-219 DOI:10.15961/j.jsuese.202100242

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

8

访问

0

被引

详细

导航
相关文章

AI思维导图

/