基于跨视图对比学习的知识感知推荐系统

鄢凡力, 胥小波, 赵容梅, 孙思雨, 琚生根

工程科学与技术 ›› 2024, Vol. 56 ›› Issue (01) : 44 -53.

PDF
工程科学与技术 ›› 2024, Vol. 56 ›› Issue (01) : 44 -53. DOI: 10.15961/j.jsuese.202300431

基于跨视图对比学习的知识感知推荐系统

作者信息 +

Author information +
文章历史 +
PDF

摘要

知识感知推荐(KGR)领域普遍存在监督信号稀疏问题。为了解决这个问题,对比学习方法被越来越广泛地应用于KGR。但是,过去基于对比学习的KGR模型仍存在一些问题:首先,使用图卷积对所有邻居节点直接聚合,无法排除知识图谱中不必要邻居节点信息的干扰;此外,只关注全局视图的信息,忽略了局部特征,这会导致过平滑问题。为了解决以上问题,提出一种基于跨视图对比学习的知识感知推荐系统(knowledge-aware recommender system with cross-views contrastive learning,KRSCCL)。KRSCCL使用关系图注意力网络构建包含用户、物品和实体节点的全局视图;使用轻量级图卷积网络构建包含用户和物品节点的局部视图,强调局部特征,有效地缓解过平滑问题;最后,在构建的两个视图的图内和图间节点对之间进行对比学习,以充分提取知识图谱信号,优化用户和物品表示。为了验证模型的有效性,在3个不同领域的公开数据集上进行了实验,实验结果表明:关系图注意力网络可以有效排除复杂网络聚合时的噪声问题;引入局部视图可以优化节点表示生成,缓解过平滑问题;KRSCCL模型在这3个数据集上都表现良好,在电影领域数据集Movielens–1M上,推荐的评估指标F1分数较最强基线提升2.0%;在音乐领域数据集Last.FM上,F1分数较最强基线提升0.3%;在书籍领域数据集Book–Crossing上,F1分数较最强基线提升5.1%。证明了本文模型的有效性。

关键词

知识感知推荐 / 对比学习 / 关系图注意力 / 推荐系统

Key words

引用本文

引用格式 ▾
鄢凡力, 胥小波, 赵容梅, 孙思雨, 琚生根. 基于跨视图对比学习的知识感知推荐系统[J]. 工程科学与技术, 2024, 56(01): 44-53 DOI:10.15961/j.jsuese.202300431

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

12

访问

0

被引

详细

导航
相关文章

AI思维导图

/