结合多尺度特征融合和注意力机制的肺腺癌病理图像分类胶囊网络

李思雨, 高静, 王云玲, 帕力旦·吐尔逊, 马玉花

新疆大学学报(自然科学版中英文) ›› 2024, Vol. 41 ›› Issue (03) : 319 -328.

PDF
新疆大学学报(自然科学版中英文) ›› 2024, Vol. 41 ›› Issue (03) : 319 -328. DOI: 10.13568/j.cnki.651094.651316.2023.07.22.0001

结合多尺度特征融合和注意力机制的肺腺癌病理图像分类胶囊网络

作者信息 +

Author information +
文章历史 +
PDF

摘要

病理学家通过分析肺腺癌低级别组织和癌旁组织来确定病灶切除范围,然而,两者间的细胞形态差异较小,分析时依赖病理学家的主观经验,耗时且易误诊.故提出一种结合多尺度特征融合和通道自注意力的胶囊网络(Multi-Scale Feature Fusion with Self-Channel Attention for Capsule Network, MSCNet),用于帮助医生高效诊断疾病,为患者提供更好的治疗方案.首先,设计了多尺度特征融合模块来提升胶囊网络以捕捉同源图像不同尺度间的语义信息,试图减少模型计算量以提高处理速度及分类准确性.其次,通道自注意力(Self-Channel Attention, SCA)模块作为MSCNet的另一重要组件,可以寻找到更具代表性的特征,辅助识别组织病理学图像中的细微特征,降低误诊风险.实验结果表明,在肺腺癌低级别组织与癌旁组织的二分类任务中,MSCNet实现了99.34%的分类准确率、97.65%的F1-Score值和97.57%的精确度.

关键词

肺腺癌 / 多尺度特征融合 / 注意力机制 / 胶囊网络

Key words

引用本文

引用格式 ▾
李思雨, 高静, 王云玲, 帕力旦·吐尔逊, 马玉花 结合多尺度特征融合和注意力机制的肺腺癌病理图像分类胶囊网络[J]. 新疆大学学报(自然科学版中英文), 2024, 41(03): 319-328 DOI:10.13568/j.cnki.651094.651316.2023.07.22.0001

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

16

访问

0

被引

详细

导航
相关文章

AI思维导图

/