一类具有交错扩散和捕获项的捕食-食饵模型的稳态解

罗丽琴, 李海侠, 吴绍艳

中山大学学报(自然科学版中英文) ›› 2025, Vol. 64 ›› Issue (04) : 134 -146.

PDF
中山大学学报(自然科学版中英文) ›› 2025, Vol. 64 ›› Issue (04) : 134 -146. DOI: 10.13471/j.cnki.acta.snus.ZR20240130

一类具有交错扩散和捕获项的捕食-食饵模型的稳态解

    罗丽琴, 李海侠, 吴绍艳
作者信息 +

Author information +
文章历史 +
PDF

摘要

研究了一类具有Crowley-Martin反应函数和捕获项的捕食-食饵交错扩散模型.首先,利用线性算子的稳定性理论给出了常数稳态解的稳定条件以及交错扩散驱动的Turing不稳定条件.其次,运用能量估计法和Leray-Schauder度理论分别讨论了非常数正稳态解的不存在性和存在性.最后,通过数值模拟对理论结果进行了验证和补充.研究结果表明交错扩散对正常数稳态解的稳定性和非常数正稳态解的存在性具有非常重要的影响,会引起模型非均匀空间模式的形成,而且采取合理的捕捞策略能确保种群的可持续发展.

关键词

捕食-食饵交错扩散模型 / Crowley-Martin反应函数 / 捕获项 / Turing不稳定 / 存在性

Key words

引用本文

引用格式 ▾
一类具有交错扩散和捕获项的捕食-食饵模型的稳态解[J]. 中山大学学报(自然科学版中英文), 2025, 64(04): 134-146 DOI:10.13471/j.cnki.acta.snus.ZR20240130

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

62

访问

0

被引

详细

导航
相关文章

AI思维导图

/