基于细胞衍生荧光碳点的葡萄糖比色及荧光测定
刘瀛琪 , 王叶梅 , 蒋恺 , 郑芬芬 , 朱俊杰
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (06) : 122 -129.
基于细胞衍生荧光碳点的葡萄糖比色及荧光测定
Colorimetric and Fluorescence Determination of Glucose Based on Cell-derived Fluorescent Carbon Dots
以肿瘤细胞为原料, 通过一步水热法合成了细胞衍生荧光碳点(CDs). 研究结果表明, 该CDs具有优异的类过氧化物酶催化活性, 能够催化过氧化氢反应生成羟基自由基. 基于此, 利用葡萄糖氧化产生的过氧化氢 及CDs的类过氧化物酶性能氧化对苯二胺(p-Phenylenediamine, PPD)底物生成氧化产物PPDox[2,5-Diamino- N,N′-di-(4-aminophenyl)-2,5-cyclohexadiene-1,4-diimine]. 并通过PPDox对荧光CDs的内滤效应, 实现了葡萄糖的比色与荧光双模式检测. 比色法与荧光法检测葡萄糖的检出限分别为41和13 µmol/L. 反应过程中, CDs具备双重功能, 既可作为类过氧化物酶催化过氧化氢产生羟基自由基用于氧化PPD, 又可作为荧光指示剂, 通过内滤效应指示葡萄糖的浓度变化.
Cell derived fluorescent carbon dots / Peroxide-like / Glucose probe
支持信息见 http://www.cjcu.jlu.edu.cn/CN/10.7503/20240386.
| [1] |
Wang L. J., Guan Z. Y., Tang A. W., J. Nanopart. Res., 2020, 22(1), 28 |
| [2] |
Liu J. J., Li R., Yang B., ACS Cent. Sci., 2020, 6(12), 2179—2195 |
| [3] |
Wareing T. C., Gentile P., Phan A. N., ACS Nano, 2021, 15(10), 15471—15501 |
| [4] |
Ross S., Wu R. S., Wei S. C., Ross G. M., Chang H. T., J. Food Drug Anal., 2020, 28(4), 677—695 |
| [5] |
Guo Y. F., Sun Y. Q., Geng X., Wang J. L., Hu J. Y., Song R. B., Yang R., Qu L. B., Li Z. H., Adv. Funct. Mater., 2024, 34(33), 2401744 |
| [6] |
Hu J. Y., Sun Y. Q., Geng X., Wang J. L., Guo Y. F., Qu L. B., Zhang K., Li Z. H., Light Sci. Appl., 2022, 11(1), 185 |
| [7] |
Shi X. X., Hu Y. L., Meng H. M., Yang J., Qu L. B., Zhang X. B., Li Z. H., Sensor Actuat. B: Chem., 2020, 306, 127582 |
| [8] |
Cohen E. N., Kondiah P. P. D., Choonara Y. E., du Toit L. C., Pillay V., Curr. Pharm. Des., 2020, 26(19), 2207—2221 |
| [9] |
Shi W. B., Wang Q. L., Long Y. J., Cheng Z. L., Chen S. H., Zheng H. Z., Huang Y. M., Chem. Commun., 2011, 47(23), 6695—6697 |
| [10] |
Gao W. H., He J. Y., Chen L., Meng X. Q., Ma Y. N., Cheng L. L., Tu K. S., Gao X. F., Liu C., Zhang M. Z., Fan K. L., Pang D. W., Yan X. Y., Nat. Commun., 2023, 14(1), 160 |
| [11] |
Wang B., Liu F., Wu Y. Y., Chen Y. F., Weng B., Li C. M., Sensor Actuat. B: Chem., 2018, 255, 2601—2607 |
| [12] |
Nirala N. R., Abraham S., Kumar V., Bansal A., Srivastava A., Saxena P. S., Sensor Actuat. B: Chem., 2015, 218, 42—50 |
| [13] |
Wang H., Liu C. Q., Liu Z., Ren J. S., Qu X. G., Small, 2018, 14(13), 1703710 |
| [14] |
Jeon H. J., Kim H. S., Chung E., Lee D. Y., Theranostics, 2022, 12(14), 6308—6338 |
| [15] |
Ha K. S., Theranostics, 2024, 14(6), 2329—2344 |
| [16] |
Du P. Y., Niu Q. D., Chen J., Chen Y., Zhao J., Lu X. Q., Anal. Chem., 2020, 92(11), 7980—7986 |
| [17] |
Li D., Li N., Zhao L. H., Xu S. M., Sun Y., Ma P. Y., Song D. Q., Wang X. H., ACS Appl. Nano Mater., 2020, 3(11), 11600—11607 |
| [18] |
Jiang K., Guan Z. F., Wang Y. F., Sun J. M., Xiong W. W., Zheng F. F., Wang Y. M., Zhu J. J., Anal. Chem., 2023, 95(47), 17392—17399 |
| [19] |
LeCroy G. E., Messina F., Sciortino A., Bunker C. E., Wang P., Fernando K. A. S., Sun Y. P., J. Phys. Chem. C, 2017, 121(50), 28180—28186 |
| [20] |
Srivastava A., Kumar N., Singh P., Singh S. K., Appl. Phys. A: Mater., 2017, 123(6), 453 |
| [21] |
Zhang Y. N., Hou D. J., Zhao B. S., Li C. Y., Wang X. Y., Xu L. Y., Long T., ACS Omega, 2021, 6(1), 857—862 |
| [22] |
Ngo Y. L. T., Nguyen P. L., Jana J., Choi W. M., Chung J. S., Hur S. H., Anal. Chim. Acta, 2021, 1147, 187—198 |
| [23] |
Mao Q. X., Kong X. L., Shuang E., Wang J. H., Chen X. W., J. Mater. Sci., 2020, 55(36), 16928—16939 |
| [24] |
Wang B. D., Shen J., Huang Y. J., Liu Z. N., Zhuang H., Int. J. Mol. Sci., 2018, 19(6), 1696 |
| [25] |
Liu Y., Jia K. Z., Chen H. Y., Wang Z. L., Zhao W., Zhu L. W., Bioprocess Biosyst. Eng., 2023, 46(10), 1399—1410 |
| [26] |
Cuhadar S., Atay A., Koseoglu M., Dirican A., Hur A., Biochem. Medica, 2012, 22(2), 202—214 |
/
| 〈 |
|
〉 |