一锅法对PMMA及聚酯类材料的表面改性及抗生物垢性能评价
赵莹 , 董继程 , 方元 , 张立军 , 靳琳 , 刘波 , 程昉
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (07) : 131 -145.
一锅法对PMMA及聚酯类材料的表面改性及抗生物垢性能评价
Surface Modification of PMMA and Polyester Materials by One-pot Method and Anti-biofouling Performance Evaluation of the Coatings
报道了一种对聚甲基丙烯酸甲酯(PMMA)及聚酯类材料表面改性的通用方法, 制备了具有广谱性和可持续后续反应活性的抗蛋白抗细菌涂层, 该方法克服了通过引入特定基团用于表面改性的限制. 分别采用一锅法和两步法在PMMA上聚合两性离子单体甲基丙烯酸磺基甜菜碱(SBMA), 元素分析结果表明, 经一锅法制备的PMMA-SBMA改性涂层的SBMA含量最高, 因此选择一锅法进行后续研究. 在聚对苯二甲酸丁二醇酯(PBT)有机玻片、 聚碳酸酯(PC)有机玻片、 聚对苯二甲酸-1,4-环己烷二甲醇酯(PCT)有机玻片和聚对苯二甲酸乙二醇酯(PET)有机玻片等聚酯类材料的表面上验证了该方法的广谱性. Ellman’s assay定量研究结果表明, PMMA-SBMA改性涂层表面仍存在乙烯基砜基基团, 表明该涂层具有可持续后续反应活性. 采用石英晶体 微天平(QCM)评价了涂层抗牛血清白蛋白(BSA)吸附的能力, 结果表明, 一锅法涂层显著减少了72.3%的蛋 白质非特异性吸附; 静态涂层抗细菌黏附能力研究结果表明, 对于蜡样芽孢杆菌、 大肠杆菌和金黄色葡萄 球菌, 静态下涂层细菌附着面积减少80%以上; 流动池和流场计算结果表明, 该涂层在两种剪切力(0.16和 1.6 dynes/cm2)的流动条件下均可以抵抗细菌附着.
A generalized method for surface modification of poly(methyl methacrylate)(PMMA) and polyester materials has been reported to prepare broad-spectrum and subsequently reactive coatings, which have anti-protein and anti-bacterial properties. The method also overcomes the common limitation of surface modification by introducing specific groups. The zwitterionic monomer(sulfobetaine methacrylate, SBMA) was polymerized on PMMA by one-pot method and two-step method, respectively. The elemental analysis results showed that the PMMA-SBMA modified coating prepared by one-pot method had the highest SBMA content, so the one-pot method was selected for follow-up study. At the same time, the optimized modification method was verified to be broad-spectrum on the surface of other polyester materials including polybutylene terephthalate(PBT), polycarbonate(PC), poly(1,4- cyclohexanedicarbinol) terephthalate(PCT) and polyethylene terephthalate(PET). Ellman’s assay showed that vinyl sulfone groups were still present on the PMMA-SBMA’s surface of the modified coating, indicating that the coating had sustainable subsequent reactivity. The anti-biological scale experiment of the PMMA-SBMA modified coating was carried out. The anti-BSA adsorption capacity of the coating was evaluated by quartz electronic microbalance(QCM), and the results showed that the one-pot coating significantly reduced the non-specific adsorption of protein by 72.3%. For Bacillus cereus, Escherichia coli and Staphylococcus aureus, the bacterial adhesion area of the static coating was reduced by more than 80%. The results of flow pool and flow field calculation showed that the bacterial adhesion ability can be resisted under the flow conditions of two shear forces(0.16 and 1.6 dynes/cm2).
一锅法 / 两性离子 / 抗细菌黏附 / 流动条件 / 剪切力
One-pot method / Zwitterion / Anti-bacterial adhesion / Flow condition / Shear force
| [1] |
Drury J. L., Mooney D. J., Biomater., 2003, 24, 4337—4351 |
| [2] |
Nair L. S., Laurencin C. T., Prog. Polym. Sci., 2007, 32, 762—798 |
| [3] |
Rezwan K., Chen Q. Z., Blaker J. J., Boccaccini A. R., Biomater., 2006, 27, 3413—3431 |
| [4] |
Yu L., Wei M., Int. J. Mol. Sci., 2021, 22, 944 |
| [5] |
Souza J. C., Sordi M. B., Kanazawa M., Ravindran S., Henriques B., Silva F. S., Aparicio C., Cooper L. F., Acta Biomater., 2019, 94, 112—131 |
| [6] |
Zafar M. S., Amin F., Fareed M. A., Ghabbani H., Riaz S., Khurshid Z., Kumar N., Biomimetics, 2020, 5(3), 34 |
| [7] |
Chen S., Jiang S., Adv. Mater., 2008, 20, 335—338 |
| [8] |
Bu Y., Ma J., Bei J., Wang S., Front. Bioeng. Biotechnol., 2019, 7, 98 |
| [9] |
Dahms H. U., Dobretsov S., Mar. Drugs., 2017, 15, 265 |
| [10] |
Yousefi S. Z., Tabatabaei⁃Panah P., Seyfi J., Colloids Surf. B Biointerf., 2018, 167, 492—498 |
| [11] |
Becker M. L., Burdick J. A., Chem. Rev., 2021, 121(18), 10789—10791 |
| [12] |
Mishra S., Shah H., Patel A., Tripathi S. M., Malviya R., Prajapati B. G., ACS Omega, 2024, 9(1), 81—96 |
| [13] |
Balaji A., Jaganathan S. K., Vellayappan M. V., John A. A., Subramanian A. P., Selvakumar M., Mohandas H., Raj S. M., Supriyanto E., RSC Adv., 2015, 5(85), 69660—69679 |
| [14] |
Wang Y. Q., Qu X., Lu J., Zhu C. F., Wan L. J., Yang J. L., Bei J. Z., Wang S. G., Biomat., 2004, 25(19), 4777—4783 |
| [15] |
Zhen S. J., Radiat. Phys. Chem., 2001, 60(4), 445—451 |
| [16] |
Ko J., Cho K., Han S. W., Flan S. W., Sung H. K., Baek S. W., Koh W., Yoon J. S., Colloi. Surf. B Biointerf., 2017, 158, 287—294 |
| [17] |
Zhang Y., Wang Z., Lin W., Sun H., Wu L., Chen S., J. Membr. Sci., 2013, 446, 164—170 |
| [18] |
Song Q., Zhao R., Liu T., Gao L., Su C., Ye Y., Chan S. Y., Liu X., Wang K., Li P., Huang W., Chem. Eng. J., 2021, 418, 129368 |
| [19] |
Pereira C., Da Moura C. S., Carrado A., Falentin⁃Daudre C., Colloid Surf. A Physicochem. Eng. Asp., 2022. 655, 130295 |
| [20] |
Li D., Wei Q., Wu C., Zhang X., Xue Q., Zheng T., Cao M., Adv. Colloid Interf. Sci., 2020, 278, 102141 |
| [21] |
Zhang Z., Finlay J. A., Wang L., Gao Y., Callow J. A., Callow M. E., Jiang S., Langmuir, 2009, 25(23), 13516—13521 |
| [22] |
Cao Y. Y., Ma J., Wu B. M., Xia M. S., Cheng S. F., J. Chem. Eng. Chinese Univ., 2020, 34(2), 512—518 |
| [23] |
曹耀匀, 马骏, 吴碧梅, 夏枚生, 陈圣福. 高校化学工程学报, 2020, 34(2), 512—518 |
| [24] |
Xin X., Jin X., Wang Y., Yuan J., Shen J., Mater. Lett., 2018, 218, 186—189 |
| [25] |
Zhang J., Shen B., Chen L., Chen L., Mo J., Feng J., ACS Appl. Mater. Interf., 2019, 11(35), 31594—31604 |
| [26] |
Zhang J., Qian S., Chen L., Chen L., Zhao L., Feng J., J. Mater. Sci. Technol., 2021, 85, 235—244 |
| [27] |
Fang K., Wang R., Zhang H., Zhou L., Xu T., Xiao Y., Zhou Y., Gao G., Chen J., Liu D., ACS Appl. Mater. Interf., 2020, 12(47), 52307—52318 |
| [28] |
Xu C., Liu L., Renneckar S., Jiang F., Ind. Crops Prod., 2021, 170, 113759 |
| [29] |
Lin Y., Ting Y., Chen B., Cheng Y., Liu T., Surf. Coat. Technol., 2020, 391, 125663 |
| [30] |
Sui X., Guo H., Chen P., Zhu Y., Wen C., Gao Y., Yang J., Zhang X., Zhang L., Adv. Funct. Mater., 2020, 30(7), 1907986 |
| [31] |
Carr L., Cheng G., Xue H., Jiang S., Langmuir, 2010, 26(18), 14793—14798 |
| [32] |
Ye Q., He B., Zhang Y., Zhang Y., Zhang J., Liu S., Zhou F., ACS Appl. Mater. Interf., 2019, 11(42), 39171—39178 |
| [33] |
Liu Y., Zhang D., Ren B., Gong X., Xu L., Feng Z., Chang Y., He Y., Zheng J., J. Mater. Chem. B, 2020, 8(17), 3814—3828 |
| [34] |
Guelses A., Lopar A., Es⁃Souni M., Emmert M., Es⁃Souni M., Behrens E., Naujokat H., Liedtke K. R., Acil Y., Wiltfang J., Florke C., Materials, 2021, 14(12), 3303 |
| [35] |
Gu Y., Liu H., Dong X., Ma Z., Li Y., Li L., Gan D., Liu P., Shen J., Rare Met., 2022, 41(2), 700—712 |
| [36] |
Cheng G., Zhang Z., Chen S., Bryers J. D., Jiang S., Biomaterials, 2007, 28(29), 4192—4199 |
| [37] |
Zhu Z., Gao Q., Long Z., Huo Q., Ge Y., Vianney N., Daliko N. A., Meng Y., Qu J., Chen H., Bioact. Mater., 2021, 6(8), 2546—2556 |
| [38] |
Yang L., Wu H., Liu Y., Xia Q., Yang Y., Chen N., Yang M., Luo R., Liu G., Wang Y., Chem. Eng. J., 2022, 427, 130910 |
| [39] |
Xu X., Wang K., Guo H., Sun G., Chen R., Yu J., Liu J., Lin C., Wang J., J. Colloid Interf. Sci., 2021, 588, 9—18 |
| [40] |
Fromel M., Pester C. W., Macromolecules, 2022, 55(12), 4907—4915 |
| [41] |
Li C., Li X., Tao C., Ren L., Zhao Y., Bai S., Yuan X., ACS Appl. Mater. Interf., 2017, 9(27), 22959—22969 |
| [42] |
Aguiar A. O., Yi H., Asatekin A., J. Membr. Sci., 2023, 669, 121253 |
| [43] |
Wang Y., Chen C., Wu X., Wang Z., Wen S., Yu J., Yan C., Cong W., Prog. Org. Coat., 2020, 144, 105666 |
| [44] |
Lee S. Y., Lee Y., Thi P. L., Oh D. H., Park K. D., Biomater. Res., 2018, 22(1), 3 |
| [45] |
Li M., Zhang W., Li J., Qi Y., Peng C., Wang N., Fan H., Li Y., Chin. Chem. Lett., 2023, 34(11), 108177 |
| [46] |
Jin Q., Chen Y., Wang Y., Ji J., Colloids Surf. B Biointerf., 2014, 124, 80—86 |
| [47] |
Liu B., Liu H., Cheng F., Liu C., Shao F., Li C., Cheng G., Wang H., Prog. Org. Coat., 2022, 172, 107081 |
| [48] |
Ma X. C., Construction and Characterization of Controllable Surface Density Gradients on Silicon Materials, Dalian University of Technology, Dalian, 2020 |
| [49] |
马晓春. 硅材料表面密度梯度的可控构建及表征, 大连: 大连理工大学, 2020 |
| [50] |
Cheng F., Ma X., Feng Q., Wang H., Yin M., He W., Biointerphases, 2019, 14(6), 61003 |
| [51] |
Qin K., Xiang C., Cao L., Biomech. Model. Mechanobiol., 2011, 10(5), 743—754 |
| [52] |
Xu G., Qin K. R., Liu Z. R., Chinese Quart. Mech., 2000, 1, 45—51 |
| [53] |
徐刚, 覃开蓉, 柳兆荣. 力学季刊, 2000, 1, 45—51 |
| [54] |
Liu C., Cheng F., He W., Acta Polym. Sin., 2023, 54(9), 1320—1332 |
| [55] |
刘冲, 程昉, 何炜. 高分子学报, 2023, 54(9), 1320—1332 |
| [56] |
Yang B., Wang C., Zhang Y., Ye L., Qian Y., Shu Y., Wang J., Li J., Yao F., Polym. Chem., 2015, 6(18), 3431—3442 |
| [57] |
Riener C. K., Kada G., Gruber H. J., Anal. Bioanal. Chem., 2002, 373(4/5), 266—276 |
| [58] |
Zhang Y., Silva D. M., Young P., Traini D., Li M., Ong H. X., Cheng S., Biotechnol. Bioeng., 2022, 119(6), 1483—1497 |
| [59] |
Moreira J. M. R., Araujo J. D. P., Miranda J. M., Simoes M., Melo L. F., Mergulhao F. J., Colloids Surf. B Biointerf., 2014, 123, 1—7 |
/
| 〈 |
|
〉 |