湿法刻蚀Ag纳米线阵列制备SiO2固态纳米孔薄膜
SiO2 Solid-state Nanopore Films Prepared by Wet Etching Ag Nanowire Arrays
相比传统生物纳米孔薄膜, 固态纳米孔薄膜在化学、 机械及热稳定性方面表现更优, 因此在生物探测和生命健康等领域具有广泛应用前景. 本文通过多靶磁控共溅射系统制备银(Ag)纳米线阵列-二氧化硅(SiO2)复合超材料薄膜, 并采用化学湿法刻蚀技术, 利用过氧化氢(H2O2)刻蚀液选择性溶解Ag纳米线阵列, 成功制备了平均直径约为5 nm的SiO2固态纳米孔阵列薄膜. 通过X射线衍射、 电感耦合等离子体发射光谱和椭圆偏振光谱等分析手段, 证实了Ag纳米线在H2O2溶液中完全溶解, 并阐明了Ag纳米线与H2O2的化学反应机理. 此外, 利用扫描电子显微镜和小角X射线散射仪对SiO2固态纳米孔阵列的形貌及微结构尺寸进行了表征. 本研究成功制备了直径小于10 nm的SiO2固态纳米孔阵列结构, 为高效制备SiO2固态纳米孔阵列提供了新的思路.
Solid-state nanopore films are used widely in biological detection, life and health, and other sectors because they are more chemically, mechanically, and thermally stable than traditional biological nanopore films. Using a multi-target magnetron co-sputtering system, silver(Ag) nanowire array-silicon dioxide(SiO2) composite metamaterial films were created. The Ag nanowire arrays were selectively dissolved by hydrogen peroxide(H2O2) solution, and chemical wet etching produced SiO2 solid nanopore array films with an average diameter of about 5 nm. X-ray diffraction, inductively coupled plasma optical emission spectroscopy and spectroscopic ellipsometry were used to confirm the complete dissolution of Ag nanowires in H2O2 solution, and the chemical reaction mechanism between Ag nanowires and H2O2 was clarified. In addition, scanning electron microscopy and small-angle X-ray scattering were used to characterize the morphology and microstructure size of SiO2 solid state nanopore array. In this study, SiO2 solid state nanopore arrays with a diameter of less than 10 nm were successfully fabricated, which provides a new idea for the efficient preparation of solid-state nanopore arrays.
固态纳米孔 / 化学湿法刻蚀 / 银纳米线阵列 / 溶解 / 磁控溅射
Solid state nanopore / Chemical wet etching / Ag nanowire array / Dissolution / Magnetron sputtering
| [1] |
Li J., Stein D., McMullan C., Branton D., Aziz M. J., Golovchenko J. A., Nature, 2001, 412(6843), 166—169 |
| [2] |
Doan T. H. P., Fried J. P., Tang W. X., Hagness D. E., Yang Y., Wu Y. F., Tilley R. D., Gooding J. J., Nano Lett., 2024, 24(21), 6218—6224 |
| [3] |
Spende A., Sobel N., Lukas M., Zierold R., Riedl J. C., Gura L., Schubert I., Moreno J. M. M., Nielsch K., Stühn B., Hess C., Trautmann C., Toimil⁃Molares M. E., Nanotechnology, 2015, 26(33), 335301 |
| [4] |
Chen S. C., Yan H., Tang P., Zhou S., Tian R., Yin Y. J., Liang L. Y., Wang D. Q., Weng T., Micronanoelectronic Technology, 2022, 59(7), 702—709 |
| [5] |
陈山川, 闫汉, 唐鹏, 周硕, 田荣, 尹雅洁, 梁丽媛, 王德强, 翁婷. 微纳电子技术, 2022, 59(7), 702—709 |
| [6] |
Zhang X. J., Qi G. D., Yang M. S., Weng T., Liang L. Y., Wang D. Q., Chinese J. Anal. Chem., 2023, 12(51), 1867—1877 |
| [7] |
张晓君, 奇国栋, 杨淼森, 翁婷, 梁丽媛, 王德强. 分析化学, 2023, 12(51), 1867—1877 |
| [8] |
Surwade S. P., Smirnov S. N., Vlassiouk I. V., Unocic R. R., Veith G. M., Dai S., Mahurin S. M., Nat. Nanotechnol., 2015, 10(5), 459—464 |
| [9] |
Zhao C. X., Liu J. N., Li B. Q., Ren D., Chen X., Yu J., Zhang Q., Adv. Funct. Mater., 2020, 30(36), 2003619 |
| [10] |
Qiu J. J., Duan Y., Li S. Y., Zhao H. P., Ma W. H., Shi W. D., Lei Y., Nano⁃Micro Lett., 2024, 16(1), 130 |
| [11] |
Chen Y., Chen Y. H., Long J. Y., Shi D. C., Chen X., Hou M. X., Gao J., Liu H. L., He Y. B., Fan B., Wong C. P., Zhao N., Int. J. Extreme Manuf., 2021, 3(3), 035104 |
| [12] |
Chen Q., Wang Y. F., Deng T., Liu Z. W., Nanotechnology, 2018, 29(8), 085301 |
| [13] |
He M. M., Tu Y., Li Y. B., Zhang L., J. Funct. Mater., 2018, 49(5), 5156—5162 |
| [14] |
何苗苗, 涂英, 李玉宝, 张利. 功能材料, 2018, 49(5), 5156—5162 |
| [15] |
Chen Y., Li Z. J., Shi D. C., Dong S. K., Chen X., Gao J., Mater. Today Commun., 2023, 35, 105519 |
| [16] |
Jia H. P., Li Z. Y., Wang B. Z., Xing G. C., Wong Y. L., Ren H., Li M. J., Wong K. Y., Lei D. Y., Wong L. W., Zhao J., Zhang W. D., Sang S. B., Jian A. Q., Zhang X. M., ACS Photonics, 2022, 9(2), 652—663 |
| [17] |
Hong H., Wei J. T., Lei X., Chen H. Y., Sarro P. M., Zhang G. Q., Liu Z. W., Microsyst. Nanoeng., 2023, 9(1), 63 |
| [18] |
Gao J. H., Wu X. Z., Li Q. W., Du S. Y., Huang F., Liang L. Y., Zhang H. L., Zhuge F., Cao H. T., Song Y. L., Adv. Mater., 2017, 29(16), 1605324 |
| [19] |
Hu H. B., Gao W. J., Zang R., Gao J. H., Tang S. W., Li X. Y., Liang L. Y., Zhang H. L., Cao H. T., Adv. Funct. Mater., 2020, 30(32), 2002287 |
| [20] |
Zhu X. Z., Liang C. Z., Yao Y. W., Chemical Reagents, 1990, 12(6), 374—375 |
| [21] |
朱效中, 梁灿忠, 姚英文. 化学试剂, 1990, 12(6), 374—375 |
| [22] |
Patra S., Munichandraiah N., J. Chem. Sci., 2009, 121(5), 675—683 |
| [23] |
Guo J. Z., Cui H., Zhou W., Wang W., J. Photoch. Photobio. A, 2008, 193(2/3), 89—96 |
| [24] |
Flätgen G., Wasle S., Lübke M., Eickes C., Radhakrishnan G., Doblhofer K., Ertl G., Electrochim. Acta, 1999, 44(25), 4499—4506 |
| [25] |
Weiss J., Nature, 1934, 133(3365), 648—649 |
| [26] |
Devi G. N., Renjith R., Suresh G., Sornadurai D., Rajaraman R., Viswanath R. N., Catal. Lett., 2023, 153(1), 239—247 |
| [27] |
Aghamalyan M. A., Hunanyan A. A., Aroutiounian V. M., Aleksanyan M. S., Sayunts A. G., Zakaryan H. A., J. Contemp. Phys.⁃Arme. 2020, 55(3), 235—239 |
| [28] |
Liu J. F., Zhao H. C., Liang F. N., You X. R., Zhou K., Chem. J. Chinese Universities, 2023, 44(10), 20230009 |
| [29] |
刘建芳, 赵浩成, 梁芳楠, 尤雪瑞, 周琨. 高等学校化学学报, 2023, 44(10), 20230009 |
| [30] |
Fang T., Wang C. L., Yu H., Acta Optica Sinica, 2024, 44(11), 324—331 |
| [31] |
方彤, 王成龙, 喻虹. 光学学报, 2024, 44(11), 324—331 |
| [32] |
Posselt D., Zhang J., Smilgies D. M., Berezkin A. V., Potemkin I. I., Papadakis C. M., Prog. Polym. Sci., 2017, 66, 80—115 |
| [33] |
Müller⁃Buschbaum P., Eur. Polym. J., 2016, 81, 470—493 |
| [34] |
Cansizoglu H., Cansizoglu M. F., Finckenor M., Karabacak T., Adv. Opt. Mater., 2013, 1(2), 158—166 |
| [35] |
Heitsch A. T., Patel R. N., Goodfellow B. W., Smilgies D. M., Korgel B. A., J. Phys. Chem. C, 2010, 114(34), 14427—14432 |
| [36] |
Yang C. M., Hong C. X., Zhou P., Miao X. R., Li X. Y., Li X. H., Bian F. G., Materials China, 2021, 40(2), 112—119 |
| [37] |
杨春明, 洪春霞, 周平, 缪夏然, 李小芸, 李秀宏, 边风刚, 中国材料进展, 2021, 40(2), 112—119 |
| [38] |
Zhu Y. P., Small Angle Scattering of X⁃Rays, Chemical Industry Press, Beijing, 2008, 21—45 |
| [39] |
朱育平. 小角X射线散射, 北京: 化学工业出版社, 2008, 21—45 |
/
| 〈 |
|
〉 |