PtxZn/MSN催化剂的合成及催化丙烷脱氢性能
王文欣 , 单译欧 , 宋佳欣 , 范晓强 , 于学华 , 孔莲 , 肖霞 , 解则安 , 赵震
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (07) : 122 -130.
PtxZn/MSN催化剂的合成及催化丙烷脱氢性能
Synthesis of the PtxZn/MSN Catalysts and Their Propane Dehydrogenation Properties
随着社会对丙烯需求的增长, 发展高效丙烯生产技术无论对于科学研究和经济发展都至关重要. 铂基催化剂由于具有较高的丙烷C—H键活化能力和丙烯选择性, 在丙烷脱氢(PDH)反应中得到了广泛的研究.然而在丙烷脱氢反应过程中, 由于Pt的烧结及积碳导致催化剂快速失活. 高稳定性小尺寸Pt基催化剂的开发至关重要. 本文以具有限域作用的介孔二氧化硅纳米粒子(MSN)为载体, 利用过渡金属锌为助剂调控活性组分Pt的电子性质及几何结构, 制备了一系列不同锌含量的PtxZn/MSN催化剂. 通过X射线衍射(XRD)、 N2气 吸附-脱附实验、 拉曼光谱、 CO漫反射红外傅里叶变换光谱、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和X射线光电子能谱(XPS)对产物进行了表征, 并测试了其PDH性能. 结果表明, 锌的加入使Pt颗粒分割为更小的Pt物种, 提高了Pt的分散度, 从而减少了副反应的发生, 提高了催化剂的稳定性. 当锌负载量为0.5%(质量分数)时, Pt0.5Zn/MSN催化剂展示了最高的PDH性能, 其中, 丙烷初始转化率为47.9%, 丙烯选择性为97.0%, 反应6 h后, 丙烷转化率仍保持在45.8%, 选择性在97.0%, 丙烯生成速率为0.82 mmol/min·gcat.
With the increasing demand of propylene in society, the development of efficient propylene production technology is crucial for both science and the economy. Platinum-based catalysts have been widely studied in propane dehydrogenation(PDH) reactions due to their high ability to activate propane C—H bonds and selectivity towards propylene. In this work, mesoporous silica nanoparticles(MSN) with confinement effect were used as the support, and transition metal zinc was selected as a promoter to control the electronic properties and geometric structure of platinum. PtxZn/MSN catalysts with different zinc loadings were prepared by the impregnation method and the products were characterized by X-Ray diffraction(XRD), N2 adsorption-desorption, Raman spectra, CO diffuse reflective infrared Fourier transform spectroscopy(CO-DRIFT), scanning electron microscope(SEM), transmission electron microscope(TEM) and X-ray photoelectron specroscopy(XPS). the PDH performance of PtxZn/MSN was tested. When the zinc loading was 0.5%(mass fraction), PtxZn/MSN catalyst showed the highest PDH activity with the initial propane conversion and propylene selectivity of 47.9% and 97.0%, respectively. After 6 h reaction, the propane conversion and propylene selectivity were 45.8% and 97.0%, with the propylene production rate of 0.82 mmol/min·gcat. The characterization results demonstrated that the addition of Zn divided Pt particles into smaller Pt species, which can improve the dispersion of Pt, reduce the occurrence of side reactions, and enhance the stability of the catalyst.
铂基催化剂 / 过渡金属锌助剂 / 介孔二氧化硅纳米粒子 / 丙烷脱氢 / 丙烯
Pt-based catalyst / Transition metal Zn promoter / Mesoporous silica nanoparticles / Propane dehydrogenation / Propylene
| [1] |
Shan Y. O., Hu H. M., Fan X. Q., Zhao Z., Phys. Chem. Chem. Phys., 2023, 25, 18609—18622 |
| [2] |
Grant J. T., Carrero C. A., Goeltl F., Venegas J., Mueller P., Burt S. P., Specht S. E., McDermott W. P., Chieregato A., Hermans I., Science, 2016, 354(6319), 1570—1573 |
| [3] |
Chen S., Chang X., Sun G. D., Zhang T. T., Xu Y. Y., Wang Y., Pei C. L., Gong J. L., Chem. Soc. Rev., 2021, 50, 3315—3354 |
| [4] |
Zeng L., Cheng K., Sun F. F., Fan Q. Y., Li L. Y., Zhang Q. H., Wei Y., Zhou W., Kang J. C., Zhang Q. Y., Chen M. S., Liu Q. N., Zhang L. Q., Huang J. Y., Cheng J., Jiang Z., Fu G., Wang Y., Science, 2024, 383(6686), 998—1004 |
| [5] |
Chernyak S. A., Corda M., Dath J., Ordomsky V. V., Khodakov A. Y., Chem. Soc. Rev., 2022, 51, 7994—8044 |
| [6] |
Liu Y. X., Hu H. M., Fan X. Q., Yu X. H., Kong L., Xiao X., Xie Z. A., Zhao Z., Chem. J. Chinese Universities, 2025, 46(3), 20240460 |
| [7] |
刘奕萱, 胡慧敏, 范晓强, 于学华, 孔莲, 肖霞, 解则安, 赵震, 高等学校化学学报, 2025, 46(3), 20240460 |
| [8] |
Srisakwattana T., Watmanee S., Wannakao S., Saiyasombat C., Praserthdam P., Panpranot J., Appl. Catal. A: Gen., 2021, 615(5), 118053 |
| [9] |
Lian Z., Ali S., Liu T. F., Si C. W., Li B., Su D. S., ACS Catal., 2018, 8(5), 4694—4704 |
| [10] |
Li C. Y., Wang G. W., Chem. Soc. Rev., 2021, 50, 4359—4381 |
| [11] |
Siri G. J., Ramallo⁃López J. M., Casella M. L., Fierro J. L. G., Requejo F. G., Ferretti O. A., Appl. Catal. A: Gen., 2005, 278(2), 239—249 |
| [12] |
Deng L. D., Zhou Z. J., Shi T., Appl. Catal. A: Gen., 2020, 606(25), 117826 |
| [13] |
Natarajan P., Khan H. A., Jaleel A., Park D. S., Kang D. C., Yoon S., Jung K. D., J. Catal., 2020, 392, 8—20 |
| [14] |
Cui X. L., Ma B. F., Pan H., Xia Y., Liu L., Zhao B. F., Liang Z., Zhang L. H., Zhang Y. K., Chem. Res. Chinese Universities, 2024, 40(2), 268—271 |
| [15] |
Shen X. Y., Qi G. D., Liang J. W., Wang R. C., Xu J., Deng F., Chem. Res. Chinese Universities, 2024, 40(6), 935—942 |
| [16] |
Liu L. C., Lopez⁃Haro M. L., Lopes C. W., Meira D. M., Concepcion P., Calvino J. J., Corma A., J. Catal., 2020, 391, 11—24 |
| [17] |
Motagamwala A. H., Almallahi R., Wortman J., Igenegbai V. O., Linic S. J., Science, 2021, 373(6551), 217—222 |
| [18] |
Searles K., Chan K. W., Mendes Burak J. A., Zemlyanov D., Safonova O., Copéret C., J. Am. Chem. Soc., 2018, 140(37), 11674—11679 |
| [19] |
Qian R., Luo S. Z., Jing F. L., Fang W. H., Ind. Eng. Chem. Res., 2022, 61(47), 17264—17274 |
| [20] |
Chen S., Zhao Z. J., Mu R. T., Chang X., Luo J., Purdy S. C., Kropf A. J., Sun G. D., Pei C. L., Miller J. T., Zhou X. H., Vovk E., Yang Y., Gong J. L., Chem, 2021, 7(2), 387—405 |
| [21] |
Han S.W., Park H., Han J. H., Kim J. C., Lee J., Jo C., Ryoo R., ACS Catal., 2021, 11(15), 9233—9241 |
| [22] |
Zhang L. K., Ma Y., Liu C. C., Wan Z. P., Zhai C. W., Wang X., Xu H., Guang Y. J., Wu P., Chinese J. Catal., 2023, 55, 241—252 |
| [23] |
Wang Y. S., Hu Z. P., Lv X. W., Chen L., Yuan Z. Y., J. Catal., 2020, 385, 61—69 |
| [24] |
Ye C. L., Peng M., Wang Y. H., Zhang N. Q., Wang D. S., Jiao M. L., Miller J. T., ACS Appl. Mater. Interfaces, 2020, 12(23), 25903—25909 |
| [25] |
Docherty S. R., Rochlitz L., Payard P. A., Copéret C., Chem. Soc. Rev., 2021, 50, 5806—5822 |
| [26] |
Fan X. Q., Yang Y., Song J. X., Shan Y. O., Yu X. H., Kong L., Xiao X., Xie Z. A., Zhao Z., Appl. Catal. A: Gen., 2024, 670(25), 119559 |
| [27] |
Fan X. Q., Liu D. D., Sun X. Y., Yu X. H., Li D., Yang Y., Liu H. Y., Diao J. Y., Xie Z. A., Kong L., Xiao X., Zhao Z., J. Catal., 2020, 389, 450—460 |
| [28] |
Martinelli A., Creci S., Vavra S., Carlsson P., Skoglundh M., Phys. Chem. Chem. Phys., 2020, 22, 1640—1654 |
| [29] |
Evaristo L., Silveira R., Tissot M., Hippler G., Moulton B., Buchner S., Int. J. Appl. Glass Sci., 2022, 14(2), 240—246 |
| [30] |
Ferri L. D., Lorenzi A., Lottici P. P., J. Raman Spectrosc., 2016, 47(6), 699—705 |
| [31] |
Han Z. P., Li S. R., Jiang F., Wang T., Ma X. B., Gong J. L., Nanoscale, 2014, 6, 10000—10008 |
| [32] |
Gao X. Q., Li W. C., Qiu B., Sheng J., Wu F., Lu A. H., J. Energy Chem., 2022, 70, 332—339 |
| [33] |
Zhang Y. N., Zhang X. Y., Yang P. F., Gao M. Y., Feng J. T., Li D. Q., Appl. Catal. B: Environ., 2021, 298(5), 120634 |
| [34] |
Deng L. D., Arakawa T., Ohkubo T., Miura H., Shishido T., Hosokawa S., Teramura K., Tanaka T., Ind. Eng. Chem. Res., 2017, 56(25), 7160—7172 |
| [35] |
Li Y. M., Mn Y. J., Zhang Q. Y., Kondratenko V. A., Jiang G. L., Sun H. Q., Han S. L., Wang Y. J., Cui G. Q., Zhou M. X., Huan Q., Zhao Z., Xu C. M., Jiang G. Y., Kondratenko E. V., J. Catal., 2023, 418, 290—299 |
| [36] |
Iida T., Zanchet D., Ohara K., Wakihara T., Leshkov Y. R., Angew. Chem. Int. Ed. Engl., 2018, 57(22), 6454—6458 |
| [37] |
Wang Y. N., Sun X. H., Yu X. H., Zhang R. J., Yan B. H., Appl. Catal. B: Environ., 2023, 337(15), 123010 |
/
| 〈 |
|
〉 |