D-A型共价有机框架纳米棒用于可见光催化苄胺偶联反应
张小会 , 赵冬冬 , 张俊杰 , 庄金亮
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (07) : 111 -121.
D-A型共价有机框架纳米棒用于可见光催化苄胺偶联反应
D-A Type Covalent Organic Framework Nanorods for Visible Light Catalyzed Benzylamine Coupling Reaction
共价有机框架(COFs)是一种新型的共价连接晶体材料, 具有结构可预测性和永久孔隙度, 被广泛应用于异相催化. 本文以光活性芘基团的有机单体(TFPPy)和含苯并噻二唑(BTz)的有机单体作为构筑单元, 通过溶剂热法合成了一种Donor-acceptor(D-A)型TFPPy-BTz-COF纳米棒光催化剂. 利用扫描电子显微镜(SEM)、 高分辨率透射电子显微镜(HRTEM)、 X射线衍射仪(XRD)、 紫外-可见漫反射光谱仪(UV-Vis DRS)、 傅里叶变换红外光谱仪(FTIR)和氮气吸附-脱附实验等手段表征了TFPPy-BTz-COF的形貌、 结构和组成. 得益于D-A型TFPPy-BTz-COF纳米棒优异的光生电子分离性能, 在室温、 氧气氛围及可见光照射条件下, TFPPy-BTz-COF纳米棒可将各种苄胺高效、 高选择性催化氧化成相应的偶联产物. 结合电子顺磁共振波谱(EPR)和活性物种捕获实验, 发现单线态氧(1O2)和超氧自由基()是关键活性氧物种, 并提出了TFPPy-BTz-COF可见光催化氧化苄胺偶联反应的催化机理.
Covalent organic frameworks(COFs) are a new type of covalently bonded crystalline materials with predictable structures and permanent porosity. COFs have found extensive applications in heterogeneous catalysts. In this study, organic monomers containing photoactive pyrene groups(TFPPy) and benzothiadiazole(BTz) were used as building units for the construction of COFs. The donor-acceptor(D-A) type TFPPy-BTz-COF nanorods photocatalysts were successfully synthesized via a solvent-thermal method. The morphology, structure, and composition of TFPPy-BTz-COF were characterized by scanning electron microscopy(SEM), high-resolution transmission electron microscopy(HRTEM), X-ray diffraction(XRD), UV-Vis diffuse reflectance spectroscopy(UV-Vis DRS), Fourier-transform infrared(FTIR) spectroscopy, and N2 adsorption-desorption measurements. The as-synthesized TFPPy-BTz-COF nanorods exhibit a rod-like morphology with a high degree of crystallinity, a specific surface area(BET) of 118.86 m²/g, and a band gap(Eg) of 2.30 eV. Benefiting from their efficient photogenerated photo-electron pair ability, the TFPPy-BTz-COF nanorods enable the coupling reaction of various amines with high efficiency and selectivity under conditions of room temperature, oxygen atmosphere, and visible light irradiation. Electron paramagnetic resonance spectroscopy(EPR) and active species trapping experiments suggested that the singlet oxygen (1O2) and superoxide radical() are key intermediates, and a catalytic mechanism for the visible light mediated photocatalytic oxidation coupling of benzylamines catalyzed by TFPPy-BTz-COF was proposed.
D-A共价有机框架 / 可见光催化 / 纳米棒 / 苄胺偶联
D-A covalent organic frameworks / Visible light-mediated photocatalysis / Nanorods / Benzylamine coupling
| [1] |
Li S. Q., Dong J., Curr. Org. Chem., 2023, 27(12), 1020—1035 |
| [2] |
Li L., Li P. F., Wang B., Chem. J. Chinese Universities, 2020, 41(9), 1917—1932 |
| [3] |
李丽, 李鹏飞, 王博. 高等学校化学学报, 2020, 41(9), 1917—1932 |
| [4] |
Mahesh K. L., Prasanna K. V., Chem. Sci., 2017, 9(8), 5845—5888 |
| [5] |
Chern⁃Hooi L., Max K., Liu B., Garret M. M., J. Am. Chem. Soc., 2018, 140(24), 7667—7673 |
| [6] |
Wu R., Wang S. K., Zhou Y., Long J. L., Dong F., Zhang W., ACS Appl. Nano Mater., 2019, 2(11), 6818—6827 |
| [7] |
Zhao Y., Xu X., Zhang K., ACS Catal., 2024, 14(5), 3556—3564 |
| [8] |
Wang K. X., Li Z. P., Chen X. Y., Cui Y., Chem. J. Chinese Universities,2022, 43(10), 20220210 |
| [9] |
王凯旋, 黎子平, 陈先阳, 崔勇. 高等学校化学学报, 2022, 43(10), 20220210 |
| [10] |
Deng L. J., Ding Z. C., Ye X. Y., Jiang D. J., Acc. Mater. Res., 2022, 3(8), 879—893 |
| [11] |
Guan X. Y., Hui L., Ma Y. C., Xue M., Fang Q. R., Yan Y. S., Valentin V., Qiu S. L., Nat. Chem., 2019, 11(2), 587—594 |
| [12] |
Fu Y., Wu Y., Chen S. H., Zhang W. X., Zhang Y., Yan T., Yang B. L., Ma H. P., ACS Nano, 2021, 1(5), 19743—19755 |
| [13] |
Meng Y., Luo Y., Ji⁃Long L. S., Ding H. M., Lang X. J., Chen W., Zheng A. M., Sun J. L., Wang C., Angew. Chem. Int. Ed., 2020, 59, 3624—3629 |
| [14] |
Meng Y., Luo Y., Ji⁃Long S., Ding H. M., Lang X. J., Chen W., Zheng A. M., Sun J. L., Wang C., J. Am. Chem. Soc., 2020, 14(2), 783—791 |
| [15] |
Xie Z., Wang B., Yang Z. F., Yang X., Yu X., Xing G. L., Zhang Y. X., Chen L., Angew. Chem. Int. Ed., 2019, 58, 15742—15746 |
| [16] |
Zhang L., Wang S. B., Zhou Y., Wang C., Zhang X. Z., Deng H. X., Angew. Chem. Int. Ed., 2019, 58, 14213—14218 |
| [17] |
Cui W. R., Zhang C. R., Jiang W., Li F. F., Liang R. P., Liu J. W., Qiu J. D., Nat. Commun., 2020, 11(2), 436—438 |
| [18] |
Li J., Jing X. C., Li Q. Q., Li S. W., Gao X., Feng X., Wang B., Chem. Soc. Rev., 2020, 4(9), 35—45 |
| [19] |
Kong X. Y., Liao L., Lu C. Z., Fang Q. R., Chem. J. Chinese Universities, 2023, 44(12), 20230282 |
| [20] |
孔祥宇, 廖力, 卢灿忠, 方千荣. 高等学校化学学报, 2023, 44(12), 20220282 |
| [21] |
Rejali N. A., Dinari M., Wang Y., Chem. Commun., 2023, 59(78), 11631—11647 |
| [22] |
Nailwal Y., Addicoat M. A., Gaurav M., Pal S. K., ACS Appl. Nano Mater., 2023, 6(3), 1714—1723 |
| [23] |
Sharma R. K., Yadav P., Yadav M., Gupta R., Rana P., Srivastava A., Zbořil R., Varma R. S., Antonietti M., Gawande M. B., Mater. Horiz., 2020,7(2), 411—454 |
| [24] |
Zhong X., Ling Q., Kuang P. L., Hu B. W., Chem. Eng. J., 2023, 467(1), 143415 |
| [25] |
Yang Y. P., Kang J. X., Li Y., Liang J. J., Liang J. X., Jiang L., Chen D. M., He J., Chen Y. J., Wang J. Q., New J. Chem., 2022, 46(45), 21605—21614 |
| [26] |
Zhao C. X., Li Z. L., Wu X. Z., Su X. W., Bai F. Q., Ran X., Yang L. Q., Fang W. W., Yang X. F., Small, 2024, 20(34), 2400541 |
| [27] |
Pang H. J., Huang D. K., Zhu Y. Q., Zhao X. D., Xiang Y. G., Chem. Sci., 2023, 14(6), 1543—1550 |
| [28] |
Xiao Y., Wei S., Wu X., Lu C., Molecules, 2024, 29(21), 5071 |
| [29] |
Han C. Q., Guo J. X., Sun S., Wang Z. Y., Wang L., Liu X. Y., Small, 2024, 20(49), 2405887 |
| [30] |
Yang S. L., Chen Z. A., Zou L., Cao R., Adv. Sci., 2023, 10(31), 2304697 |
| [31] |
Mohamed M. G., Lee C. C., EL⁃Mahdy A. F. M., Lüder J., Yu M. H., Li Z., Zhu Z. L., Chueh C. C., Kuo S. W., J. Mater. Chem. A, 2020, 8(22), 11448—11459 |
| [32] |
Li X., Wang Y. X., Zhang F. L, Lang X. J., J. Colloid Interface Sci., 2023, 648, 683—692 |
| [33] |
Ma B. W., Hu F. J., Yang X., Huang Y. Y., Yang X. B., Qiao X. J., Wang Z., Yang D. H., Ai W. Y., Mi L. W., Appl. Catal. A: Gen., 2023, 662, 119269 |
| [34] |
Cheng J., Wu Y. T., Zhang W., Zhang J., Wang L., Zhou M., Fan F. T., Wu X. J., Xu X. G., Adv. Mat., 2024, 36(6), 2305313 |
| [35] |
Chen W. B., Wang L., Mo D. Z., He F., Wen Z. L., Wu X. J., Xu H. X., Chen L., Angew. Chem. Int. Ed., 2020, 59(39), 16902—16909 |
| [36] |
Cui W. R., Jiang W., Zhang C. R., Liang R. P., Liu J. W., Qiu J. D., ACS Sustainable Chem. Eng., 2020, 8(1), 445—451 |
| [37] |
Gao C., Guan X. H., Zhang M. H., Hu H. R., Chen L., Sun C. G., Zhang C., Du Y., Hu B. C., Macromol. Rapid Commun., 2023, 44(19), 2300311 |
| [38] |
Wei H., Guo Z., Liang X., Chen P., Liu H., Xing H., ACS Appl. Mater. Interfaces, 2019, 11(3), 3016—3023 |
| [39] |
Yang M. Y., Zhang S. B., Zhang M., Li Z. H., Liu Y. F., Liao X., Lu M., Li S. L., Lan Y. Q., J. Am. Chem. Soc., 2024, 146(5), 3396—3404 |
| [40] |
Kou J. F., Wang G. P., Guo H. Y., Li L., Fang J., Ma J. T., Dong Z. P., Appl. Catal. B: Environ., 2024, 352, 124020 |
| [41] |
Wang L. Y., Chakraborty J., Deng M. J., Sun J. M., Van Der Voort P., Chem. Cat. Chem., 2024, 16(16), e202400200 |
/
| 〈 |
|
〉 |