氨基烷基萘酚类化合物的合成及抑菌和杀线虫活性
张琦璘 , 史衍常 , 高堃 , 王林松 , 宋亚东 , 王郁森 , 李鹏程 , 刘松 , 邢荣娥 , 宋琳 , 秦玉坤
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (08) : 43 -53.
氨基烷基萘酚类化合物的合成及抑菌和杀线虫活性
Synthesis of Aminoalkyl Naphthol Analogues and Their Anti-fungal and Nematicidal Activities
通过一锅法三组分反应, 合成了一系列氨基烷基萘酚类化合物, 并对其抗植物病原真菌和杀线虫活性进行了评估. 结果表明, 在200~25 μg/mL浓度范围内, 化合物8对链格孢菌的抑制活性约为50%, 且抑制效果与浓度无明显相关性. 活体抑菌实验表明, 化合物8在50 μg/mL浓度下具有与阳性对照嘧菌酯相当的抑菌作用. 此外, 在温室试管实验中, 合成的化合物对南方根结线虫表现出显著的抑制活性, 其中化合物10在 10 μg/mL浓度下能显著减少根结数量, 抑制率高达90.91%, 与阳性对照氟吡菌酰胺相当. 综上, 氨基烷基萘酚类化合物作为一种新型农药活性物质, 具有潜在的抑菌和杀线虫双重功效, 研究结果为开发环境友好型多靶点农药提供了新思路.
A series of amino-alkyl naphthol compounds was synthesized through a one-pot three⁃component reaction, their antifungal activity against plant pathogenic fungi and nematicidal activity were evaluated. The results showed that compound 8 exhibited about 50% inhibitory activity against Alternaria alternate at concentrations ranging from 200 μg/mL to 25 μg/mL, and the inhibitory effect was not significantly correlated with concentration. In vivo antifungal experiments indicated that compound 8 at a concentration of 50 μg/mL had a therapeutic effect comparable to the positive control pyrimethanil. Additionally, in greenhouse test tube experiments, the synthesized compounds showed significant inhibitory activity against southern root-knot nematodes, with compound 10 significantly reducing the number of galls at a concentration of 10 μg/mL, achieving an inhibition rate of 90.91%, which is comparable to the positive control fluopyram. In summary, amino-alkyl naphthol compounds, as a new type of pesticide active substance, have potential dual effects of antibiosis and nematicide, and the aforementioned research provides new ideas for the development of environmentally friendly multi-target pesticides.
一锅法 / 氨基烷基萘酚 / 抗植物病原真菌活性 / 杀线虫活性
One pot method / Amidoalkyl naphthol / Anti-fungal activity / Nematicidal activity
支持信息见http: //www.cjcu.jlu.edu.cn/CN/10.7503/20250031.
| [1] |
Niu B., Wang W. X., Yuan Z. B., Sederoff R. R., Sederoff H., Chiang V. L., Borriss R., Front. Microbiol., 2020, 11, 585404 |
| [2] |
Chen W., Lan Y. X., Jin Y. X., Chen Y., Wu R., Chu C. W., Gao Y. F., Chem. J. Chinese Universities, 2023, 44(10), 20230179 |
| [3] |
陈伟, 兰雨欣, 金彦西, 陈阳, 吴润, 储承文, 高嫣凤. 高等学校化学学报, 2023, 44(10), 20230179 |
| [4] |
Salvatore M. M., Andolfi A., Toxins, 2021, 13(10), 689 |
| [5] |
Burns A. R., Baker R. J., Kitner M., Knox J., Cooke B., Volpatti J. R., Vaidya A. S., Puumala E., Palmeira B. M., Redman E. M., Snider J., Marwah S., Chung S. W., MacDonald M. H., Tiefenbach J., Hu C., Xiao Q., Finney C. A. M., Krause H. M., MacParland S. A., Stagljar I., Gilleard J. S., Cowen L. E., Meyer S. L. F., Cutler S. R., Dowling J. J., Lautens M., Zasada I., Roy P. J., Nature, 2023, 618(7963), 102—109 |
| [6] |
Maqsood A., Aslam M. N., Khaliq H., Shakeel M. T., Wu H. Y., Fahad S., J. Plant Growth Regul., 2024, 43(7), 2454—2469 |
| [7] |
Zou Y., Zhu M., Zhu Z. N., Du T. T., Liu X., Jiang Y. J., Chen J. X., J. Agric. Food Chem., 2025, 73(8), 4534—4543 |
| [8] |
Peng J., Zhang Y., Yang J. G., Zhou L. L., Zhang S. D., Wu X., Chen J. X., Hu D. Y., Gan X. H., J. Agric. Food Chem., 2024, 72(28), 15561—15571 |
| [9] |
Zhang M. H., Feng S., Chen S., Zhou Y. X., Gong C. Y., Xue W., Pest Manag. Sci., 2023, 79(12), 4795—4808 |
| [10] |
Larwood D. J., J. Fungi, 2020, 6(4), 261 |
| [11] |
Abd El⁃Wahab A. H. F., Pharmaceuticals⁃Base, 2012, 5(7), 745—757 |
| [12] |
Petkov H., Simeonov S. P., Appl. Sci.⁃Basel, 2023, 13(11), 6616 |
| [13] |
Cimarelli C., Molecules, 2019, 24(13), 2372 |
| [14] |
Zhang X., Hu Z., Wang S., Yin F. M., Wei Y. Y., Xie J., Sun R. F., J. Agric. Food Chem., 2023, 71(36), 13209—13219 |
| [15] |
Olyaei A., Sadeghpour M., Rsc Advances, 2020, 10(12), 7011—7011 |
| [16] |
Shaterian H. R., Yarahmadi H., Arkivoc, 2008, 105—114 |
| [17] |
Mulla S. A. R., Salama T. A., Pathan M. Y., Inamdar S. M., Chavan S. S., Tetrahedron Lett., 2013, 54(7), 672—675 |
| [18] |
Patil S. B., Singh P. R., Surpur M. P., Samant S. D., Ultrason. Sonochem., 2007, 14(5), 515—518 |
| [19] |
Sapkal S. B., Shelke K. F., Madje B. R., Shingate B. B., Shingare M. S., Bull. Korean Chem. Soc., 2009, 30(12), 2887—2889 |
| [20] |
Wang X. B., Dong X., Wang R. Y., Zhang J., Wang M. Q., Zhang Z. Q., Yang T. Y., Xu M. H., Chem. J. Chinese Universities, 2024, 45(2), 20230444 |
| [21] |
王晓斌, 董雪, 王瑞颖, 张娟, 王濛琪, 张宗群, 杨婷玉, 许梦寒. 高等学校化学学报, 2024, 45(2), 20230444 |
| [22] |
Duanis⁃Assaf D., Alkan N., Shimshoni J. A., Food Control, 2023, 154, 110041 |
| [23] |
Hu Z. X., Zhang J., Zhang T., Tian C. Y., An Q., Yi P., Yuan C. M., Zhang Z. K., Zhao L. H., Hao X. J., J. Agric. Food Chem., 2024, 72(14), 8225—8236 |
| [24] |
Li Y., Ma T. G., Yang Y., Zhong X., Zhu G. F., Wang J. T., Chen W. Z., Fan J. D., Tang L., Liu W. J., Fan L. L., J. Agric. Food Chem., 2024, 72(48), 26983—26995 |
| [25] |
Wang L. S., Qin Y. K., Fan Z. Q., Gao K., Zhan J., Xing R. E., Liu S., Li P. C., J. Agric. Food Chem., 2022, 70(15), 4644—4657 |
| [26] |
Cardellicchio C., Capozzi M. A. M., Naso F., Tetrahedron⁃Asymmetr., 2010, 21(5), 507—517 |
| [27] |
Shaterian H. R., Azizi K., Fahimi N., Arab. J. Chem., 2017, 10, S42—S55 |
| [28] |
Liu Y., Tian J., Zeng W., Wang Y. H., Hu C. M., Luo X. P., Qiu Y. J., Pu H. T., Wu Y. J., Xue W., J. Agric. Food Chem., 2024, 72(43), 23766—23775 |
| [29] |
Shanbhag G., Naik M., Wagh D., Autkar S., Hagalavadi M. V., Wachendorff U., Pabba J., Klausener A., Pest Manag. Sci., 2024, https: //doi.org/10.1002/ps.8431 |
| [30] |
Yuan Q. L., Fu W., Li X. Y., Xu Z. P., Liu X. L., Li Z., Shao X. S., J. Agric. Food Chem., 2024, 72(29), 16112—16127 |
| [31] |
Wang X., Gao D. M., Li J., Wang X. X., Xu J. L., Zhang H., Gao Y. Q., Wu H., Ma Z. Q., J. Agric. Food Chem., 2024, 72(39), 21869—21876 |
| [32] |
Chen X. F., Ren T., Mei D. H., Wei X. H., Guo Y. S., Li Y. Z., Nan Z. B., Song Q. Y., J. Agric. Food Chem., 2025, 73(11), 6711—6723 |
| [33] |
Fan Z. Q., Qin Y. K., Liu S., Xing R. E., Yu H. H., Chen X. L., Li K. C., Li R. F., Wang X. Q., Li P. C., Carbohydr. Polym., 2019, 224, 115155 |
/
| 〈 |
|
〉 |