三维多孔结构及与铟合金化协同提升锑电极储钠性能
孙雨涵 , 敬茂森 , 赵宝雁 , 鲍晓冰 , 罗巧梅 , 苟蕾 , 樊小勇
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (07) : 90 -99.
三维多孔结构及与铟合金化协同提升锑电极储钠性能
Sodium Storage Performance of Antimony Electrodes Synergistically Enhanced by Three-dimensional Porous Structure and Alloying with Indium
锑因高达660 mA·h/g的理论储钠容量, 被认为是钠离子电池的理想负极材料之一, 然而其在充放电循环过程中会发生巨大的体积变化, 导致活性材料粉化脱落, 限制了其实际应用. 为了解决此问题, 本文采用简单的电沉积方法, 在具有微米级孔的三维(3D)多孔铜集流体上构筑了InSb合金(3D Cu@InSb). 引入的In元素能够有效抑制Sb电极的团聚现象, 同时减少了副反应的发生, 提升了首次库仑效率; 三维多孔结构提供了较大的比表面积和丰富的活性位点, 不仅有助于增加储钠容量、 提高离子扩散速率, 还能为体积膨胀提供缓冲空间, 进而增强材料的结构稳定性. 在In合金元素和三维多孔结构协同作用下, 3D Cu@InSb展现出较高的首次库仑效率(80.7%)、 良好的循环稳定性(在10 A/g电流密度下循环400次容量保持率为97.6%)和倍率性能(在 20 A/g电流密度下比容量为225.4 mA·h/g).
Antimony(Sb) is considered as an ideal anode for sodium-ion batteries due to its high theoretical sodium storage capacity of 660 mA·h/g. However, its commercial application is impeded by significant volume changes during charge-discharge cycling, which lead to the pulverization and shedding of the active materials. To address these issues, this study employed a simple electro-deposition method to fabricate an InSb alloy on a three-dimensional porous copper current collector with micrometer-sized pores(3D Cu@InSb). The introduced indium(In) element effectively suppresses the aggregation of Sb electrodes, the occurrence of irreversible reactions, and thus enhances the initial Coulombic efficiency. Meanwhile, the three-dimensional porous structure provides a large specific surface area and abundant active sites, which not only increase the sodium storage capacity and ion diffusion rate but also offer enough buffer space for volume expansion, thereby enhancing the structural stability of the material. Under the synergistic effect of the In element and the three-dimensional porous structure, the 3D Cu@InSb electrode exhibits a high initial Coulombic efficiency of 80.7%, good cycling stability(a capacity retention rate of 97.6% after 400 cycles at a current density of 10 A/g), and excellent rate performance(a specific capacity of 225.4 mA·h/g at a high current density of 20 A/g).
钠离子电池 / 负极 / 铟锑合金 / 三维多孔铜 / 电沉积
Sodium-ion battery / Anode / InSb alloy / Three-dimensional porous copper / Electrodeposition
| [1] |
Rehman A. U., Saleem S., Ali S., Abbas S. M., Choi M., Choi W., Energy Mater., 2024, 4(6), 2—64 |
| [2] |
Mamoor M., Li Y., Wang L., Jing Z. X., Wang B., Qu G. M., Kong L. T., Li Y. Y., Guo Z. P., Xu L. Q., Green Energy Resour., 2023, 1(3), 100033 |
| [3] |
Zhang L. L., Dong H. H., He X. X., Li L., Li L., Wu X. Q., Chou S. L., Chem. J. Chinese Universities, 2023, 4(1), 20220620 |
| [4] |
张玲玲, 董欢欢, 何祥喜, 李丽, 李林, 吴星樵, 侴术雷. 高等学校化学学报, 2023, 44(1), 20220620 |
| [5] |
Yang C. Y., Yang C. H., Chem. J. Chinese Universities, 2023, 44(5), 20220728 |
| [6] |
杨翠云, 杨成浩. 高等学校化学学报, 2023, 44(5), 20220728 |
| [7] |
Bai Y., Feng R., Yan T., Liu Y., Cui L., Wang K., Chem. Res. Chinese Universities, 2023, 39(6), 1100—1105 |
| [8] |
Yang Z., Kang Q. L., Rui W., Yan L. J., Meng X. H., Ma T. L., Rare Met., 2024, 43(10), 4777—4806 |
| [9] |
Liao H., Liu H. Z., Gou Q. Y., Zeng R. L., Zhao D., Yuan X. P., Chen F. Y., Xie G., Hou Y. Q., J. Power Sources, 2025, 625, 235739 |
| [10] |
Xu Z., Lu X. X., Li L. Y., Shen K. F., Liu X., Xia Y., Cai Y. R., Wang X. S., J. Electroanal. Chem., 2024, 961, 118252 |
| [11] |
Nguyen A. G., Le H. T. T., Verma R., Vu D. L., Park C. J., Chem. Eng. J., 2022, 429, 132359 |
| [12] |
Yang K., Tang J., Liu Y., Kong M., Zhou B., Shang Y., Zhang W. H., ACS Nano, 2020, 14(5), 5728—5737 |
| [13] |
He H., Sun D., Tang Y. G., Wang H. Y., Shao M. H., Energy Storage Mater., 2019, 23, 233—251 |
| [14] |
Orzech Marcin W., Mazzali F., McGettrick J. D., Pleydell⁃Pearce C., Watson T. M., Voice W., Jarvis D., Margadonna S., J. Mater. Chem., 2017, 5(44), 23198—23208 |
| [15] |
Kong M., Liu Y., Zhou B., Yang K., Tang J., Zhang P., Zhang W. H., Small, 2020, 16(43), 2001976 |
| [16] |
Yao S. S., Cui J., Deng Y., Chong W. G., Wu J. X., Ihsan Ul Haq M., Mai Y. W., Kim J. K., Energy Storage Mater., 2019, 20, 36—45 |
| [17] |
Zhao N., Qin J., Chu L. J., Wang L. Z., Xu D., Wang X. J., Yang H. J., Zhang J. J., Li X. F., Nano Energy, 2020, 78, 105345 |
| [18] |
Yao Y., Zong R. Q., Gai J. L., Energy Storage Sci. Technol., 2024, 13(8), 2649—2664 |
| [19] |
姚远, 宗若奇, 盖建丽. 储能科学与技术, 2024, 13(8), 2649—2664 |
| [20] |
Li W. Y., Liu T. T., Zhang J. D., Peng N., Zheng R. T., Yu H. X., Bai Y., Cui Y. H., Shu J., Sustainable Energy Fuels, 2019, 3(10), 2668—2674 |
| [21] |
Wang S., Liu C. Z., Zhao M. Q., Song R., Lu Y., Gou L., Gong F., Fan X. Y., Li D. L., J. Power Sources, 2024, 614, 234960 |
| [22] |
Peng X. H., Yuan Y., Gu D. C., Zheng X. W., Li D. J., Wu L., Huang G. S., Wang J. F., Pan F. S., Small, 2024, 20(38), 2400967 |
| [23] |
Usui H., Domi Y., Takada N., Sakaguchi H., Cryst. Growth Des., 2020, 21(1), 218—226 |
| [24] |
Blondeau L., Foy E., Khodja H., Gauthier M., J. Phys. Chem. C, 2018, 123(2), 1120—1126 |
| [25] |
Mao Q. L., Jia Y. X., Zhu W. H., Gao L. J., J. Solid State Electrochem., 2023, 27(6), 1433—1441 |
| [26] |
Ma W. S., Guo Z. Y., Xu Y. Z., Bai Q. G., Gao H., Wang W. M., Yang W. F., Zhang Z. H., Electrochim. Acta, 2021, 399, 139429 |
| [27] |
Zang R., Li P., Wang G. X., Chem. Res. Chinese Universities, 2020, 36(3), 431—438 |
| [28] |
Liu X. Y., Tian Y., Cao X. Q., Li X. R., Le Z. Y., Zhang D. Q., Li X. Y., Nie P., Li H. X., ACS Appl. Energy Mater., 2018, 1(11), 6381—6387 |
| [29] |
Jing W. T., Zhang Y., Gu Y., Zhu Y. F., Yang C. C., Jiang Q., Matter., 2019, 1(3), 720—733 |
| [30] |
He Z. Y., Zhang W., Li M. Q., RSC Adv., 2023, 13(24), 16643—16650 |
| [31] |
Ma G., Xu C., Zhang D. Y., Che S., Wang Y., Yang J. H., Chen K. Y., Sun Y., Liu S., Fu J. J., J. Colloid Interface Sci., 2024, 673, 26—36 |
| [32] |
Zhang D., Dai A., Fan B. F., Li Y. G., Shen K., Xiao T., Hou G. Y., Cao H. Z., Tao X. Y., Tang Y. P., ACS Appl. Mater. Interfaces, 2020, 12(28), 31542—31551 |
| [33] |
Liu Y. H., Huang H. X., Xiong G. Y., Li S. R., Xing Y. L., Zhang S. C., Electrochem. Commun., 2024, 163, 107702 |
| [34] |
Zhao H., Lei D., He Y. B., Yuan Y. F., Yun Q. B., Ni B., Lv W., Li B. H., Yang Q. H., Kang F. Y., Adv. Energy Mater., 2018, 8(19), 1800266 |
| [35] |
Fan X. Y., Zhu Y. Q., Wu Y., Zhang S., Xu L., Gou L., Li D. L., Chem. J. Chinese Universities, 2022, 43(4), 20210861 |
| [36] |
樊小勇, 朱永强, 毋妍, 张帅, 许磊, 苟蕾, 李东林. 高等学校化学学报, 2022, 43(4), 20210861 |
| [37] |
Wang S., Sun Y. H., Gao X., Song R., Zhao M. Q., Lu Y., Bao X. B., Luo Q. M., Gou L., Fan X. Y., Chem. J. Chinese Universities, 2024, 45(6), 20240122 |
| [38] |
王帅, 孙雨涵, 高欣, 宋瑞, 赵铭钦, 卢垚, 鲍晓冰, 罗巧梅, 苟蕾, 樊小勇. 高等学校化学学报, 2024, 45(6), 20240122 |
| [39] |
Jing M. S., Fan X. Y., Wang S., Zhang L. L., Li J. L., Wang K. X., Gou L., Li D. L., Chem. Eng. J., 2023, 456, 141040 |
| [40] |
Fan X. Y., Han J. X., Ding Y. L., Deng Y. P., Luo D., Zeng X. T., Jiang Z., Gou L., Li D. L., Chen Z. W., Adv. Energy Mater., 2019, 9(28), 1900673 |
| [41] |
Monnens W., Billiet N., Binnemans K., Fransaer J., J. Solid State Electrochem., 2024, 28(10), 3755—3768 |
| [42] |
Zhang J. W., Li Y., Chen Z., Liu Q., Chen Q. G., Chen M. H., Energy Environ. Mater., 2023, 6(6), e12573 |
| [43] |
Allan P. K., Griffin J. M., Darwiche A., Borkiewicz O. J., Wiaderek K. M., Chapman K. W., Morris A. J., Chupas P. J., Monconduit L., Grey C. P., J. Am. Chem. Soc., 2016, 138(7), 2352—2365 |
| [44] |
Zeng F. X., Liu C., Cao Y. L., J. Inorg. Mater., 2021, 36(11), 1137—1145 |
| [45] |
曾凡鑫, 刘创, 曹余良. 无机材料学报, 2021, 36(11), 1137—1145 |
| [46] |
Usui H., Domi Y., Yamagami R., Fujiwara K., Nishida H., Sakaguchi H., ACS Appl. Energy Mater., 2018, 1(2), 306—311 |
| [47] |
Mohammad I., Blondeau L., Foy E., Leroy J., Leroy E., Khodja H., Gauthier M., Sustain. Energy Fuels, 2021, 5(15), 3825—3835 |
| [48] |
Jeon J. H., Kim J. E., Kim T. H., Park C. S., Jung K., Yoon J., Kim J., Kim Y. H., Kang K. S., Electrochem. Commun., 2024, 160, 107668 |
| [49] |
Huang Y. X., Wang Z. H., Jiang Y., Li S. J., Wang M., Ye Y. S., Wu F., Xie M., Li L., Chen R. J., Adv. Sci., 2018, 5(10), 1800613 |
| [50] |
Mishra S. R., Gadore V., Yadav G., Ahmaruzzaman M., Next Energy, 2024, 2, 100071 |
| [51] |
Fan X. Y., Jiang Z., Huang L., Wang X. X., Han J. X., Sun R. B., Gou L., Li D. L., Ding Y. L., ACS Appl. Mater. Interfaces, 2020, 12(18), 20344—20353 |
| [52] |
Zheng X., Zhang Z., Li Z. Q., Shi C. H., Zhao J. Q., Tang J., ChemSusChem, 2024, 18(2), e202401271 |
| [53] |
Qiu J. X., Li S., Su X. T., Wang Y. Z., Xu L., Yuan S. Q., Li H. M., Zhang S. Q., Chem. Eng. J., 2017, 320, 300—307 |
| [54] |
Ding F. X., Ji P. X., Han Z., Hou X. Y., Yang Y., Hu Z. L., Niu Y. S., Liu Y., Zhang J., Rong X. H., Lu Y. X., Mao H. C., Su D., Chen L. Q., Hu Y. S., Nature Energy, 2024, 9(12), 1529—1539 |
/
| 〈 |
|
〉 |