海绵状氧化石墨烯/聚乙二醇复合相变材料的制备及性能
蔡磊 , 李立哲 , 李昊 , 蔡畅 , 李铁虎
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (10) : 145 -155.
海绵状氧化石墨烯/聚乙二醇复合相变材料的制备及性能
Preparation and Property of Sponge-like Graphene Oxide/Polyethylene Glycol Composite Phase Change Materials
针对现有复合相变材料(Composite phase change material, CPCM)中载体质量较大且导热性能不佳的问题, 采用改进的Hummers方法制备了氧化石墨烯(Graphene oxide, GO)胶体溶液, 并通过冷冻干燥技术进一步制备成具有多孔结构的海绵状氧化石墨烯(Sponge-like graphene oxide, SLGO). 以SLGO为载体, 聚乙二醇(Polyethylene glycol, PEG)为相变介质, 通过真空浸渍结合超声辅助工艺, 制备了SLGO/PEG复合相变材料. 采用紫外-可见光谱(UV-Vis)、 扫描电子显微镜(SEM)、 傅里叶变换红外光谱(FTIR)、 X射线衍射(XRD)、 差示扫描量热法(DSC)和激光导热等表征技术分析了复合相变材料的微观结构和热物理性能. 研究结果表明, PEG在SLGO孔隙中的有效填充和片层吸附作用不仅显著增大了石墨烯层间距, 并通过氢键与SLGO表面的含氧官能团形成了稳定的相互作用. 复合相变材料具有超过179 J/g的高潜热值和172.7 J/g的结晶焓, 相对焓效率均超过90%, 表明其优异的相变储能性能. 尤为重要的是, SLGO的添加显著提升了材料的热导率, 当 SLGO的质量分数增至1%时, 复合相变材料的热导率可达0.98 W·m-1·K-1. 此外, 随着SLGO含量的增加, 复合相变材料的定形效果得到显著增强.
To address the challenges of high carrier mass and insufficient thermal conductivity in existing composite phase change materials(CPCMs), this study synthesized graphene oxide(GO) colloidal solutions via an improved Hummers method. A sponge-like graphene oxide(SLGO) with a porous structure was further fabricated through freeze-drying technology. Utilizing SLGO as the carrier and polyethylene glycol(PEG) as the phase change medium, the SLGO/PEG composite phase change material was prepared by combining vacuum impregnation with ultrasonic- assisted processing. The microstructure and thermophysical properties of the composite materials were systematically characterized using ultraviolet-visible(UV-Vis) spectroscopy, scanning electron microscopy(SEM), Fourier-transform infrared(FTIR) spectroscopy, X-ray diffraction(XRD), differential scanning calorimetry(DSC), and laser thermal conductivity analysis. The results demonstrate that PEG effectively fills the pores of SLGO and adsorbs onto its layers, significantly expanding the graphene interlayer space and forming stable hydrogen bonds with oxygen-containing functional groups on the SLGO surface. The composite materials exhibited high latent heat values exceeding 179 J/g and crystallization enthalpies of 172.7 J/g, with relative enthalpy efficiencies over 90%, highlighting their excellent energy storage performance. Most importantly, the addition of SLGO significantly enhanced the thermal conductivity of the material, reaching 0.98 W·m-1·K-1 when the mass fraction of SLGO was increased to 1%. Furthermore, the shape stabilization of the composite material was significantly enhanced with higher SLGO content.
复合相变材料 / 海绵状氧化石墨烯 / 聚乙二醇 / 潜热值 / 热导率
Composite phase change material / Sponge-like graphene oxide / Polyethylene glycol / Latent heat value / Thermal conductivity
| [1] |
Xu T. Y., Feng Y. Y., Feng W., Acta Polym. Sin., 2021, 52(1), 78—83 |
| [2] |
徐天宇, 冯奕钰, 封伟. 高分子学报, 2021, 52(1), 78—83 |
| [3] |
Zhu W. N., Huang B. Y., Zhao J., Y. Chen X. Y., Sun C. S., Energy Build., 2023, 287, 112926 |
| [4] |
Li B. X., Nie S. B., Hao Y. G., Liu T. X., Zhu J. B., Yan S. L., Energy Conv. Manag., 2015, 98, 314—321 |
| [5] |
Wang F., Pang D. Q., Liu X. F., Liu M. W., Du W. F., Zhang Y. C., Cheng X. Q., J. Energy Storage, 2023, 60, 106606 |
| [6] |
Suresh C., Saini R. P., Int. J. Energy Res., 2021, 45(4), 5730—5746 |
| [7] |
Heritage K., Bryant B., Fenner L. A., Wills A. S., Aeppli G., Soh Y. A., Adv. Funct. Mater., 2020, 30(36), 1909163 |
| [8] |
Guo X., Wei K., Ni T. F., Shi W. S., Dai C. X., Zhao Z. F., Gu Z. P., J. Energy Storage., 2024, 88, 111525 |
| [9] |
Shi J. M., Aftab W., Liang Z. B., Yuan K. J., Maqbool M., Jiang H. Y., Xiong F., Qin M. L., Gao S., Zou R. Q., J. Mater. Chem. A, 2020, 8(38), 20133—20140 |
| [10] |
Wang Y., Comer J., Chen Z. F., Chen J. W., Gumbart J. C., Environ. Sci. Nano, 2018, 5(9), 2117—2128 |
| [11] |
Huang Q. Q., Li X. X., Zhang G. Q., Kan Y. C., Li C. B., Deng J., Wang C. H., Appl. Energy, 2022, 309, 118434 |
| [12] |
Zhang J. W., Cheng Z. D., Wang J. L., Huang D. J., Sun M. K., Wang X. Y., Guo Y. X., Int. J. Pavement. Eng., 2023, 24(1), 2259570 |
| [13] |
Tas C. E., Karaoglu O., Tas B. A., Ertas E., Unal H., Bildirir H., Sol. Energy Mater. Sol. Cells, 2020, 216, 110677 |
| [14] |
Fang Y. T., Kang H. Y., Wang W. L., Liu H., Gao X. N., Energy Conv. Manag., 2010, 51(12), 2757—2761 |
| [15] |
Zheng R., Cai Z. Y., Wang C. M., Shen J. F., Xie S. A., Qi Z. Y., J. Therm. Anal. Calorim., 2023, 148(19), 9937—9946 |
| [16] |
Feng L. L., Zheng J., Yang H. Z., Guo Y. L., Li W., Li X. G., Sol. Energy Mater. Sol. Cells, 2011, 95(2), 644—650 |
| [17] |
Li M., Mu B. Y., Appl. Energy, 2019, 242, 695—715 |
| [18] |
Zhu X. N., Feng D. L., Feng Y. H., Lin L., Zhang X. X., Acta Phys. Sin., 2023, 72(8), 320—329 |
| [19] |
朱祥宁, 冯黛丽, 冯妍卉, 林林, 张欣欣. 物理学报, 2023, 72(8), 320—329 |
| [20] |
Yang J., Zhou J. T., Nie Z. X, Liu L., Rev. Compos. Mater. Av., 2019, 2019(1), 29 |
| [21] |
Yan K. N, Feng Y. H., Qiu L., Sol. Energy., 2024, 272, 112477 |
| [22] |
Gu X. B., Dong K. J., Peng L. H., Bian L., Sun Q., Luo W. M., Zhang B. B., Energy Conv. Manag., 2023, 277, 116634 |
| [23] |
Chen X., Cheng P., Tang Z. D., Xu X. L., Gao H. Y., Wang G., Adv. Sci., 2021, 8(9), 2001274 |
| [24] |
Wang D., Ge X. S., Zhang J. F., Su Z. M., Chem. Res. Chinese Universities, 2019, 35(6), 1082—1088 |
| [25] |
Hu Y. J., Jin J., Zhang H., Wu P., Cai C. X., Acta Phys. Chim. Sin., 2010, 26(8), 2073—2086 |
| [26] |
胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26(8), 2073—2086 |
| [27] |
Bahiraei M., Heshmatian S., Energy Conv. Manag., 2019, 196, 1222—1256 |
| [28] |
Huang G. J., Chen Z. G., Li M. D., Yang B., Xin M. L., Li S. P., Yin Z. J., Acta Chim. Sinica, 2016, 74(10), 789—799 |
| [29] |
黄国家, 陈志刚, 李茂东, 杨波, 辛明亮, 李仕平, 尹宗杰. 化学学报, 2016, 74(10), 789—799 |
| [30] |
Wu J. Y., Lin H., Moss D. J., Loh K. P., Jia B. H., Nat. Rev. Chem., 2023, 7(3), 162—183 |
| [31] |
Yang X. D., Guo Z. Q., Xu Y. C., Li Z. L., Zhou Y. T., Yang Z. M., Zhou Z. S., Gao Y., Zhang J. S., Chem. Res. Chinese Universities, 2024, 40(3), 536—547 |
| [32] |
Huang Q. Q., Chen Y., Yu H. Q., Yan L. G., Zhang J. H., Wang B., Du B., Xing L. T., Chem. Eng. J., 2018, 341, 1—9 |
| [33] |
Wang B. Zhang F., He S. F., Huang F., Peng Z. Y., Asian J. Chem., 2014, 26(15), 4901—4906 |
| [34] |
Cao H. Y., Bi H. C., Xie X., Su S., Sun L. T., Acta Phys. Sin., 2016, 65(14), 221—232 |
| [35] |
曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 物理学报, 2016, 65(14), 221—232 |
| [36] |
Rodríguez⁃García S., Santiago R., López⁃Díaz D., Merchán M. D., Velázquez M. M., Fierro J. L. G., Palomar J., ACS Sustain. Chem. Eng., 2019, 7(14), 12464—12473 |
| [37] |
Abbasabadi M. K., Rashidi A., Safaei⁃Ghomi J., Khodabakhshi S., Rahighi R., J. Sulfur Chem., 2015, 36(6), 660—671 |
| [38] |
Wen B. Y., Sun C. Z., Bai B. F., Acta Phys. Chim. Sin., 2015, 31(2), 261—267 |
| [39] |
温伯尧, 孙成珍, 白博峰. 物理化学学报, 2015, 31(2), 261—267 |
| [40] |
Li P. H., Zhang C. L., Dai X. Y., Sui Y. L., Chem. J. Chinese Universities, 2021, 42(6), 1694—1703 |
| [41] |
李佩鸿, 张春玲, 戴雪岩, 隋颜隆. 高等学校化学学报, 2021, 42(6), 1694—1703 |
| [42] |
Hu Y., Li Z., Li H. Q., Song S. X., Lopez⁃Valdivieso A., Surf. Rev. Lett., 2017, 24(6), 1750087 |
| [43] |
Shrivastava S., Thomas S., Sobhan C. B., Peterson G. P., Int. J. Refrig., 2018, 96, 179—190 |
| [44] |
Cheong Y. K., Arce M. P., Benito A., Chen D. J., Crisóstomo N. L., Kerai L. V., Rodríguez G., Valverde J. L., Vadalia M., Cerpa⁃Naranjo A., Ren G. G., Nanomaterials, 2020, 10(5), 819 |
| [45] |
Chen Q. L., Huang X. N., Chen Y. Z., Chen X., Hao Z. F., Liang J. J., Yu J., Tan G. Z., Sol. Energy Mater. Sol. Cells, 2025, 285, 113509 |
| [46] |
Cárdenas⁃Ramírez C., Gómez M. A., Jaramillo F., Fernández A. G., Cabeza L. F., J. Energy Storage, 2021, 40, 102661 |
| [47] |
Li M., Wang C. C., Renew. Energy, 2019, 141, 1005—1012 |
| [48] |
Li Z., Zhang B., Wang L. W., 2023, 74(6), 2680—2688 |
| [49] |
李振, 张博, 王丽伟. 化工学报, 2023, 74(6), 2680—2688 |
| [50] |
Du Y., Huang H. W., Hu X. P., Liu S., Sheng X. X., Li X. L., Lu X., Qu J. P., Renew. Energy, 2021, 171, 1—10 |
| [51] |
Fang Y., Li Z. L., Li X. L., Wu H., Sheng M. J., Lu X., Qu J. P., Chem. Eng. J., 2023, 459, 141600 |
| [52] |
Gök Ö., Alkan C., J. Therm. Anal. Calorim., 2021, 146(4), 1511—1523 |
| [53] |
Wu Y. F., Li L. T., Chen S. P., Qin J., Chen X. L., Zhou D. F., Wu H., Sci. Rep., 2020, 10(1), 3627 |
国家自然科学基金(51872235)
国家自然科学基金(52072302)
国家自然科学基金(51802267)
河北省教育厅科学研究项目(QN2025669)
/
| 〈 |
|
〉 |