“电渗析+反渗透”双膜法资源化处理偏二甲肼高盐废水
薛林勇 , 朱和林 , 张念 , 吴延楠 , 杨振邈 , 魏晨杰 , 刘立芬
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (07) : 166 -174.
“电渗析+反渗透”双膜法资源化处理偏二甲肼高盐废水
Recycling Treatment of Unsymmetrical Dimethylhydrazine High-salinity Wastewater via "Electrodialysis+Reverse Osmosis" Double Membrane Processes
偏二甲肼(UDMH)是导弹、 卫星和飞船发射试验以及运载火箭的主体燃料, 其生产的废水中含有高浓度盐、 碱及UDMH, 若直接排放会导致水体、 土壤污染, 严重危害人类健康. 本文设计了一种“电渗析+反渗透”双膜法对偏二甲肼高盐废水进行资源化处理, 首先, 采用电渗析对偏二甲肼废水中的盐、 碱等无机物杂质进行脱除, 之后利用反渗透进行浓缩, 从而实现偏二甲肼的高纯度回收, 同时考察了离子交换膜、 操作电压、 料液流量对电渗析脱盐过程的影响规律, 并优化了反渗透浓缩过程的工艺. 结果表明, 电渗析过程对废水中盐、 碱的去除率高达98.6%, 而偏二甲肼的损失率则低于13.5%, 其电流效率为53.1%, 过程能耗约1.02 kW·h/kg; 反渗透过程可将偏二甲肼浓缩浓度从1.1 g/L浓缩至6.3 g/L, 浓缩倍率高达5.6倍, 达到了偏二甲肼回收的要求.
Unsymmetrical dimethylhydrazine(UDMH) is the main fuel for missile, satellite and spacecraft launch tests as well as carrier rockets. Its production wastewater contains high concentrations of salt, alkali and UDMH. Direct discharge of the UDMH wastewater can cause water and soil pollution, seriously endangering human health. Therefore, this paper designed a kind of “electrodialysis+reverse osmosis” double membrane processes for recycling treatment of the high salinity UDMH wastewater. Firstly, the electrodialysis(ED) was used to remove the impunities of salt and base in the wastewater, and then the reverse osmosis(RO) was carried out to further concentrate the desalinated wastewater for the highly purified recovery of UDMH. Meanwhile, the influences of ion exchange membrane, operating voltage and feed liquid flow rate on desalination process of ED were investigated, and the concentration technique of reverse osmosis process was also optimized. The research results showed that the electrodialysis process can remove 98.6% of NaCl and base(NaOH, ect.), the loss rate of UDMH is less than 13.5%, the current efficiency can reach 53.1%, and the process energy consumption is about 1.02 kW·h/kg. The concentration of UDMH is concentrated from 1.1 g/L to 6.3 g/L, and the concentration ratio of UDMH is about 5.6 times, which meets the reuse requirement of UDMH.
偏二甲肼高盐废水 / “电渗析+反渗透”双膜法 / 资源化处理 / 偏二甲肼高纯度回收
High-salinity unsymmetrical dimethyl hydrazine wastewater / “Electrodialysis+reverse osmosis” double membrane process / Recycling treatment / Highly purified recovery of unsymmetrical dimethylhydrazine(UDMH)
支持信息见http: //www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20250039.
| [1] |
Ding X. J., Ma X. Z., Wang C., Fine Chemicals, 1993, 10(5), 39—41 |
| [2] |
丁晓君, 马祥征, 王春. 精细化工, 1993, 10(5), 39—41 |
| [3] |
Li H., Wang M. D., Wang Y. P., Liu Y. L., Journal of Wuhan Engineering University, 2019, 41(5), 440—446 |
| [4] |
李慧, 王明迪, 王燕平, 刘友林. 武汉工程大学学报, 2019, 41(5), 440—446 |
| [5] |
Wang F., Study on the Treatment of UDMH Wastewater, Lanzhou University, Lanzhou, 2013 |
| [6] |
汪沣. 偏二甲肼废水处理研究, 兰州: 兰州大学, 2013 |
| [7] |
Wang H., Gao D. S., Northern Environ., 2004, 2, 42—48 |
| [8] |
王浩, 高殿森. 北方环境, 2004, 2, 42—48 |
| [9] |
Zhan J. J., He B., Zou L. P., Zhou X. Z., Chen Z. H., Chem. Study, 2001, 4, 29—33 |
| [10] |
湛建阶, 何斌, 邹利鹏, 周旭章, 陈朝辉. 化学研究, 2001, 4, 29—33 |
| [11] |
Ismagilov Z. R., Kerzhentsev M. A., Ismagilov I. Z., Sazonov V. A., Parmon V. N., Elizarova G. L., Pestunova O. P., Shandakov V. A., Zuev Y. L., Eryomin V. N., Pestereva N. V., Garin F., Veringa H. J., Catal. Today, 2002, 75(1—4), 277—285 |
| [12] |
Pestunova O. P., Elizarova G. L., Ismagilov Z. R., Kerzhentsev M. A, Parmon V. N., Catal. Today, 2002, 75(1—4), 219—225 |
| [13] |
Lunn G., Sansone E. B., Chemosphere, 1994, 29(7), 1577—1590 |
| [14] |
Wang Z. Y., Zhang J. D., Industrial Water Treatment, 2002, 12, 1—5 |
| [15] |
王增玉, 张敬东. 工业水处理, 2002, 12, 1—5 |
| [16] |
Xie M., Shon H. K., Gray S. R., Elimelech M., Water Research, 2016, 89, 210—221 |
| [17] |
Fidaleo M., Moresi M., Adv. Food Nutr. Res., 2006, 51, 265—360 |
| [18] |
Gurreri L., Tamburini A., Cipollina A., Micale G., Membranes (Basel), 2020, 10(7), 146 |
| [19] |
Gonçalves F., Fernandes C., dos Santos P. C., de Pinho M. N., J. Food Engin., 2003, 59(2/3), 229—235 |
| [20] |
Vera E., Ruales J., Dornier M., Sandeaux J., Sandeaux R., Pourcelly G., J. Chem. Technol. Biotechnol., 2003, 78(8), 918—925 |
| [21] |
Strathmann H., Desalination, 2010, 264(3), 268—288 |
| [22] |
Acheampong M. A., Meulepas R. J. W., Lens P. N. L., J. Chem. Technol. Biotechnol., 2010, 85(5), 590—613 |
| [23] |
Fu F. L., Wang Q., J. Environ Manage, 2011, 92(3), 407—418 |
| [24] |
Scarazzato T., Panossian Z., Tenório J. A. S., Perez⁃Herranz V., Espinosa D. C. R., J. Cleaner Production, 2017, 168, 1590—1602 |
| [25] |
Choi J., Chung J., Indus. Engin. Chem. Res., 2014, 53(27), 11167—11175 |
| [26] |
Choudhury R. R., Gohil J. M., Mohanty S., Nayak S. K., J. Mater. Chem. A, 2018, 6(2), 313—333 |
| [27] |
Lee S., Choi J., Park Y. G., Shon H., Ahn C. H., Kim S. H., Desalination, 2019, 454, 104—111 |
| [28] |
Lim Y. J., Goh K., Kurihara M., Wang R., J. Membrane Sci., 2021, 629, 119292 |
| [29] |
Tang F., Hu H. Y., Sun L. J., Wu Q. Y., Jiang Y. M., Guan Y. T., Huang J. J., Desalination, 2014, 349, 73—79 |
| [30] |
Chen F. F., Su T., Zhao X. T., Pan J. F., Liu L. F., J. Membrane Sci., 2021, 637, 119625 |
| [31] |
Campione A., Gurreri L., Ciofalo M., Micale G., Tamburini A., Cipollina A., Desalination, 2018, 434, 121—160 |
| [32] |
Shi J., Yuan Q., Gao C. C., Membrane Technology Manual, Beijing, Chemical Industry Press, 2001, 422—423 |
| [33] |
时钧, 袁泉, 高从堦. 膜技术手册, 北京: 化学工业出版社, 2001, 422—423 |
| [34] |
Xing W. W., Journal of Henan University of Education(Natural Science Edition), 2018, 27(2), 59—61 |
| [35] |
邢玮玮. 河南教育学院学报(自然科学版), 2018, 27(2), 59—61 |
/
| 〈 |
|
〉 |