基于二维Ti3C2T x 纳米片/导电科琴黑复合材料聚甲基丙烯酸分子印迹电化学传感器的构建及多巴胺检测
任书芳 , 郭童 , 王子涵 , 刘亚慧 , 陈雨 , 曾俊菱
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (07) : 31 -41.
基于二维Ti3C2T x 纳米片/导电科琴黑复合材料聚甲基丙烯酸分子印迹电化学传感器的构建及多巴胺检测
Construction of Molecular Imprinted Electrochemical Sensor Based on 2D Ti3C2T x Nanosheet/Conductive Kochen Black Composite Polymethacrylic Acid and the Detection of Dopamine
构建了基于二维Ti3C2T x 纳米片/导电科琴黑复合材料的聚甲基丙烯酸分子印迹电化学传感器, 用于多巴胺(DA)检测. 利用湿法刻蚀技术和超声机械混合法制备了二维Ti3C2T x 纳米片(d-Ti3C2T x )/导电科琴黑(KB)复合材料; 以DA为模板分子, 甲基丙烯酸为功能单体, 利用电化学沉积技术在d-Ti3C2T x /KB修饰电极表面制备了选择性识别DA分子的分子印迹聚合物膜. 采用X射线衍射、 场发射扫描电子显微镜及透射电子显微镜分析了材料的成分及形貌结构, 用循环伏安法以铁氰化钾为电子探针考察了修饰电极的电化学性能, 用脉冲伏安法(DPV)考察了电极对DA的电化学响应性能. 对检测条件如修饰材料质量比、 功能与单体之比、 电沉积圈数、 富集时间及pH等参数进行了优化. 检测结果显示, 所构筑的传感器对DA有较高的DPV电化学响应性, 线性检测范围为1×10-6~1×10-2 mol/L, 检出限为4.228 μmol/L(S/N=3). 该传感器具有良好的抗干扰性和重复性. 采用标准加入法检测了非侵入性尿液样品中的DA, 加标回收率为82.5%~93.75%, RSD均低于5%. 构筑的传感器具有较高的灵敏度和可靠性, 为DA检测提供了可借鉴和参考的方法和思路.
In this paper, we constructed a poly(methacrylic acid) molecularly imprinted electrochemical sensor based on two-dimensional Ti3C2Tx nanosheets/conductive carbon black(KB) composite for the detection of dopamine(DA). In the beginning, two-dimensional Ti3C2T x nanosheets/conductive KB composites were prepared by wet etching and ultrasonic mechanical mixing techniques and DA was used as the template molecule and methacrylic acid as the functional monomer. Afterwards, a molecularly imprinted polymer film selective for DA was fabricated on the surface of the d-Ti3C2T x /KB modified electrode by electrochemical deposition. The composition and morphology of the materials were analyzed by X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM) and transmission electron microscopy(TEM). The electrochemical performance of the modified electrode was investigated by cyclic voltammetry using potassium ferricyanide as an electron probe. The electrochemical response of the electrode to DA was examined by pulse voltammetry. The detection conditions such as the mass ratio of the modified material, the ratio of the template molecule and functional monomer to the cross-linker, the number of electrochemical deposition cycles, the enrichment time, and pH were optimized. The detection results showed that the constructed sensor had a high electrochemical response to DA, with a detection range of 1×10-6—1×10-2 mol/L and a minimum detection limit of 4.228 μmol/L(S/N=3). The sensor exhibited good anti-interference and repeatability. DA in urine samples was detected by the standard addition method, with recovery rates ranging from 82.5% to 93.75% and RSDs all below 5%. The DA detection molecularly imprinted electrochemical sensor constructed in this experiment has high sensitivity and reliability, providing a method and idea for the detection of DA samples.
多巴胺 / 电化学传感器 / 分子印迹 / MXenes / Ti3C2T x / 科琴黑
Dopamine / Electrochemical sensor / Molecular imprinting / MXenes / Ti3C2T x / Ketjen black
| [1] |
Park S. J., Lee S. H., Yang H., Park C. S., Lee C. S., Kwon O. S., Park T. H., Jang J., Acs Appl. Mater. Interfaces, 2016, 8, 28897—28903 |
| [2] |
Zhao T., Wang J. W., Zhang H. S., Zheng X., Chen Y. P., Tang H., Jiang J. H., Anal. Chem., 2022, 94, 15541—15545 |
| [3] |
Irkham, Nasa K., Kurnia I., Hartati Y. W., Einaga Y., Biosens. Bioelectron., 2023, 220, 114892 |
| [4] |
Zhang X., Zhang Y. C., Ma L. X., Sens. Actuators, B, 2016, 227, 488—496 |
| [5] |
Wise R. A., Robble M. A., Annu. Rev. Psychol., 2020, 71, 79—106 |
| [6] |
Li J., Zhao J., Wei X., Annu. Rev. Psychol., 2009, 140, 663—669 |
| [7] |
Kajisa T., Li W., Michinobu T., Sakata T., Biosens. Bioelectron., 2018, 117, 810—817 |
| [8] |
Li J. H., Zhang J., Yan L., Feng Y., Zhang J L., Chem. J. Chinese Universities, 2024, 45(12), 20240322 |
| [9] |
李嘉慧, 张剑, 严龙, 丰芸, 章家立, 刘永鑫, 杨绍明. 高等学校化学学报, 2024, 45(12), 20240322 |
| [10] |
Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M. W., Adv. Mater., 2011, 23, 4248—4253 |
| [11] |
Alhabeb M., Maleski K., Anasori B., Lelyukh P., Clark L., Sin S., Gogotsi Y., Chem. Mater., 2017, 29, 7633—7644 |
| [12] |
Wu Z., Shang T., Deng Y., Tao Y., Yang Q. H., Adv. Sci., 2020, 7, 1903077 |
| [13] |
Xu B. Z., Zhu M. S., Zhang W. C., Zhen X., Pei Z. X., Xue Q., Zhi C. Y., Shi P., Adv. Mater., 2016, 28, 3333—3339 |
| [14] |
Anasori B., Lukatskaya M. R., Gogotsi Y., Nat. Rev. Mater., 2017, 2, 16098 |
| [15] |
Wang H., Wu Y., Yuan X. Z. H., Zeng G. M., Zhou J., Wang X., Chew J. W., Adv. Mater., 2018, 30, 1704561 |
| [16] |
Ren C. E., Hatzell K. B., Alhabeb M., Ling Z., Mahmoud K. A., Gogotsi Y., J. Phy. Chem. Lett., 2015, 6, 4026—4031 |
| [17] |
Shahzad F., Alhabeb M., Hatter C. B., Anasori B., Hong S. M., Koo C. M., Gogotsi Y., Science, 2016 353, 1137—1140 |
| [18] |
Ghidiu M., Lukatskaya M. R., Zhao M. Q., Gogotsi Y., Barsoum M. W., Nature, 2014, 516, 78—U171 |
| [19] |
Tang Q., Zhou Z., Shen P. W., J. Am. Chem. Soc., 2012, 134, 16909—16916 |
| [20] |
Dillon A. D., Ghidiu M. J., Krick A. L., Griggs J., May S. J., Gogotsi Y., Barsoum M. W., Fafarman A. T., Adv. Funct. Mater., 2016, 26, 4162—4168 |
| [21] |
Zhou S. J., Gu C. X., Li Z. Z., Yang L. Y., He L. H., Wang M. H., Huang X. Y., Zhou N., Zhang Z. H., Appl. Surf. Sci., 2019, 498, 143889 |
| [22] |
Ba Z. C., Liang D. X., Xie Y. J., Chem. J. Chinese Universities, 2021, 42, 1225—1240 |
| [23] |
巴智晨, 梁大鑫, 谢延军, 高等学校化学学报, 2021, 42, 1225—1240 |
| [24] |
Liu J., Zhang H. B., Sun R., Liu Y., Liu Z., Zhou A., Yu Z. Z., Adv. Mater., 2017, 29, 1702367 |
| [25] |
Zhang X., An D., Bi Z., Shan W., Zhu B., Zhou L., Yu L., Zhang H., Xia S., Qiu M., J. Electroanal. Chem., 2022, 911 |
| [26] |
Ma X., Tu X., Gao F., Xie Y., Huang X., Fernandez C., Qu F., Liu G., Lu L. M., Yu Y., Sen. Actuators B: Chem., 2020, 309, 127815 |
| [27] |
Zhao F., Yao Y., Jiang C., Shao Y., Barceló D., Ying Y., Ping J., J. Hazard. Mater., 2020, 384, 121358 |
| [28] |
Balkourani G., Brouzgou A., Tsiakaras P., Carbon, 2023, 213, 118281 |
| [29] |
Guo M., Li F., Ran Q., Zhu G., Liu Y., Han J., Wang G., Zhao H., Microchem. J., 2023, 190, 108709 |
| [30] |
Balkourani G., Brouzgou A., Vecchio C. L., Aricò A. S., Baglio V., Tsiakaras P., Electrochim. Acta, 2022, 409, 139943 |
| [31] |
Jiang X., Mu Z., Wang J., Zhou J., Bai L., Food Chem., 2024, 436, 137704 |
| [32] |
Tashima D., Yoshitama H., Otsubo M., Maeno S., Nagasawa Y., Electrochim. Acta, 2011, 56, 8941—8946 |
| [33] |
Wu Y., Yang M., Wang S., Hou S., Zou Y., Tao Y., Yang C., J. Alloys Compd., 2023, 962, 171177 |
| [34] |
Zhang L., Su J. H., Chen X. T., Wang Q. J., New Chem. Mater., 2020, 48, 60—63 |
| [35] |
张亮, 苏纪宏, 陈晓涛, 石斌, 王庆杰. 化工新型材料, 2020, 48, 60—63 |
| [36] |
Deng H., Sun X. H., Lu L., Shi J. C., Xu H. F., J. Dalian Jiaotong Univ., 2023, 44, 99⁃103+113 |
| [37] |
邓晗, 孙小卉, 卢璐, 史继诚, 徐洪峰. 大连交通大学学报, 2023, 44, 99⁃103+113 |
| [38] |
Luo S., Kan X., Food Chem., 2022, 387, 132922 |
/
| 〈 |
|
〉 |