季铵盐阳离子辅助合成富含硫空位MoS2催化含硫硝基芳烃加氢性能
凌宗鹏 , 陈海涛 , 高红霞 , 戴慧聪 , 赵侦超 , 杨启华
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (08) : 107 -114.
季铵盐阳离子辅助合成富含硫空位MoS2催化含硫硝基芳烃加氢性能
Quaternary Ammonium Cation-assisted Synthesis of Sulfur Vacancy-rich MoS2 for Catalyzing Hydrogenation of Sulfur-containing Nitroarenes
催化含硫硝基芳烃加氢制备其相应的氨基化合物是实现药物中间体绿色催化转化的重要反应. 然而, 由于硫原子强配位作用会毒化过渡金属加氢催化剂, 抑制了催化剂活性的发挥. 本文选择具有本征抗硫中毒的MoS2作为催化剂, 利用具有不同有机链长季铵盐阳离子取代钼酸铵前驱体中铵离子来调变其硫化晶化行为, 制备了相应的MoS2催化剂. 电子顺磁共振(EPR)及O2滴定原位红外(IR)表征结果显示, 随季铵盐碳链增长MoS2的边缘硫空位显著增加. 在催化模型底物5-硝基苯并噻唑(NBZ)加氢反应中, MoS2的边缘硫空位可能是主要的活性中心. 所得最优催化剂的性能优于Co-Mo-S催化剂, 在固定床连续流反应器中, 在80 ℃, 0.3 MPa条件下催化剂转化效率可达49 mgNBZ·gcat‒1·h‒1, 优于同等条件下的Pt/TiO2催化剂.
The catalytic hydrogenation of sulfur-containing nitroaromatic hydrocarbons to their corresponding amino compounds is a crucial reaction for achieving green transformation in pharmaceutical intermediates. However, the strong coordination of sulfur atoms poisons transition metal hydrogenation catalysts, suppressing their catalytic activity. Herein, we selected intrinsically sulfur-resistant MoS2 as the catalyst and modulated its sulfidation behavior by replacing ammonium ions in molybdate precursors with quaternary ammonium cations of varying organic chain lengths to synthesize corresponding MoS2 catalysts. Electron paramagnetic resonance(EPR) and O2 titration in situ infrared(IR) characterization reveal that edge sulfur vacancies in MoS2 increase with the elongation of quaternary ammonium salt carbon chains. In the hydrogenation of the model substrate 5-nitrobenzothiazole(NBZ), the catalyst’s activity is closely related to edge S vacancies. The optimized catalyst outperforms the currently reported Co-Mo-S catalysts. In a fixed-bed continuous flow reactor under 80 ℃, 0.3 MPa, the catalyst achieves a conversion efficiency of 49 mgNBZ·gcat‒1·h‒1, surpassing the performance of the supported noble metal catalyst Pt/TiO2 under identical conditions. This study demonstrates that long-chain organic quaternary ammonium cations significantly enhance edge S vacancies in MoS2, highlighting their potential application value in hydrogenating sulfur-containing nitroaromatic compounds.
硫化钼 / 季铵盐阳离子 / 硫空位 / 含硫硝基芳烃 / 催化加氢
MoS2 / Quaternary ammonium cation / S vacancy / Sulfur-containing nitroarene / Catalytic hydrogenation
| [1] |
Corma A., Serna P., Science, 2006, 313(5785), 332—334 |
| [2] |
Formenti D., Ferretti F., Scharnagl F. K., Beller M., Chem. Rev., 2019, 119(4), 2611—2680 |
| [3] |
Song J., Huang Z. F., Pan L., Li K., Zhang X., Wang L., Zou J. J., Appl. Catal. B: Environ., 2018, 227, 386—408 |
| [4] |
Blaser H. U., Steiner H., Studer M., ChemCatChem, 2009, 1(2), 210—221 |
| [5] |
Serna P., Corma A., ACS Catal., 2015, 5(12), 7114—7121 |
| [6] |
Si Y., Jiao Y., Wang M., Xiang S., Diao J., Chen X., Chen J., Wang Y., Xiao D., Wen X., Wang N., Ma D., Liu H., Nat. Commun., 2024, 15(1), 4887 |
| [7] |
Chen H., Ling Z., Wang Y., Dai H., Zhao Z., Yang Q., ChemCatChem, 2025, 17, e202401506 |
| [8] |
Yang H., Chen H., Chen J., Omotoso O., Ring Z., J. Catal., 2006, 243(1), 36—42 |
| [9] |
Kim H. J., Song C., J. Catal., 2021, 403, 203—214 |
| [10] |
Zhai Z., Lu Y., Liu G., Ding W. L., Cao B., He H., Chem. Res. Chinese Universities, 2024, 40(1), 3—19 |
| [11] |
Gao Y. P., Liu B., Kang J. N., Lu J. Q., Yu Z. G., Zhang Z. H., Gao W. X., Chem. J. Chinese Universities, 2024, 45(5), 20240040 |
| [12] |
高永平, 刘柏, 康家宁, 吕杰琼, 于泽广, 张志会, 高文秀. 高等学校化学学报, 2024, 45(5), 20240040 |
| [13] |
Xie X. L., Liu Z., Lu J. M., Yu S., Li X. Y., Su B. L., Chen L. H., Chem. J. Chinese Universities, 2023, 44(10), 20230109 |
| [14] |
谢小兰, 刘湛, 吕佳敏, 余申, 李小云, 苏宝连, 陈丽华. 高等学校化学学报, 2023, 44(10), 20230109 |
| [15] |
Liu X., Ren Y., Wang M., Ren X., Liu J., Yang Q., ACS Catal., 2022, 12(18), 11369—11379 |
| [16] |
Fan S., Yao Z., Cheng W., Zhou X., Xu Y., Qin X., Yao S., Liu X., Wang J., Li X., Lin L., ACS Catal., 2023, 13(1), 757—765 |
| [17] |
Cheng M., Zhang X., Guo Z., Lv P., Xiong R., Wang Z., Zhou Z., Zhang M., J. Colloid Interface Sci., 2021, 602, 459—468 |
| [18] |
Ishikawa H., Nakatani N., Yamaguchi S., Mizugaki T., Mitsudome T., ACS Catal., 2023, 13(8), 5744—5751 |
| [19] |
Guo Z., Wang R., Guo Y., Jiang J., Wang Z., Li W., Zhang M., ACS Catal., 2022, 12(24), 15193—15206 |
| [20] |
Huang T., Xu J., Fan Y., Appl. Catal. B: Environ., 2018, 220, 42—56 |
| [21] |
Mom R. A. O., Louwen J. N., Frenken J. W. M., Groot I. A. O., Nat.Commun., 2019, 10, 2546 |
| [22] |
Breysse M., Furimsky E., Kasztelan S., Lacroix M., Perot G., Catal. Rev., 2002, 44(4), 651—735 |
| [23] |
Bekx⁃Schürmann S., Mangelsen S., Breuninger P., Antoni H., Schürmann U., Kienle L., Muhler M., Bensch W., Grünert W., Appl. Catal. B: Environ., 2020, 266, 118623 |
| [24] |
Travert A., Nakamura H., van Santen R. A., Cristol S., Paul J. F., Payen E., J. Am. Chem. Soc., 2002, 124(24), 7084—7095 |
| [25] |
Daage M., Chianelli R. R., J. Catal., 1994, 149(2), 414—427 |
| [26] |
Wu K., Li X., Wang W., Huang Y., Jiang Q., Li W., Chen Y., Yang Y., Li C., ACS Catal., 2022, 12(1), 8—17 |
| [27] |
Liu G., Robertson A. W., Li M. M. J., Kuo W. C. H., Darby M. T., Muhieddine M. H., Lin Y. C., Suenaga K., Stamatakis M., Warner J. H., Tsang S. C. E., Nat. Chem., 2017, 9(8), 810—816 |
| [28] |
Hu J., Yu L., Deng J., Wang Y., Cheng K., Ma C., Zhang Q., Wen W., Yu S., Pan Y., Yang J., Ma H., Qi F., Wang Y., Zheng Y., Chen M., Huang R., Zhang S., Zhao Z., Mao J., Meng X., Ji Q., Hou G., Han X., Bao X., Wang Y., Deng D., Nat. Catal., 2021, 4(3), 242—250 |
| [29] |
Jiang Y., Wang D., Li J., Li M., Pan Z., Ma H., Lv G., Qu W., Wang L., Tian Z., Catal. Sci. Technol., 2017, 7(14), 2998—3007 |
| [30] |
Lin G. X., Wang J. C., Chem. J. Chinese Universities, 2022, 43(9), 20220321 |
| [31] |
林高鑫,王家成.高等学校化学学报, 2022, 43(9), 20220321 |
| [32] |
Sorribes I., Liu L., Corma A., ACS Catal., 2017, 7(4), 2698—2708 |
| [33] |
Huang R., Yang C., Ta N., Ma H., Qu W., Wang C., Pan Z., Wang D., Tian Z., Chem. Commun., 2023, 59(72), 10765—10768 |
| [34] |
Yao H. B., Li X. B., Liu S. J., Yu S. H., Chem. Commun., 2009, (44), 6732—6734 |
| [35] |
Kang L., Liu S., Zhang Q., Zou J., Ai J., Qiao D., Zhong W., Liu Y., Jun S. C., Yamauchi Y., Zhang J., ACS Nano., 2024, 18(3), 2149—2161 |
| [36] |
Li Z., Han M., Zhang Y., Yuan F., Fu Y., Yu J., Adv. Sci., 2023, 10(15), 2207234 |
| [37] |
Xie J., Zhang J., Li S., Grote F., Zhang X., Zhang H., Wang R., Lei Y., Pan B., Xie Y., J. Am. Chem. Soc., 2013, 135(47), 17881—17888 |
| [38] |
Yuan Q., Gu Y., Chen W., Zhang Y., Song X., Ding Y., Li X., Zhu L., Jiang Z., Yan L., Ma J., Ding Y., Angew. Chem. Int. Ed., 2024, 63(52), e202411632 |
/
| 〈 |
|
〉 |