结直肠癌野生型和耐药型细胞系之间基因表达状态的比较分析
于成鲲 , 周海超 , 张聪敏 , 任艳 , 刘斯奇
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (08) : 25 -34.
结直肠癌野生型和耐药型细胞系之间基因表达状态的比较分析
Comprehensive Analysis of the Gene Expression Status in Wild and Drug-resistance Cell Lines of Colorectal Cancer
对3种结直肠癌细胞系(HCT116, LoVo及HT29)的野生株和Oxaliplatin/SN38耐药株的转录组和蛋白质组分别进行了检测, 通过分析野生株与耐药株基因表达的差异发现, 在Oxaliplatin耐药细胞系中, 3种细胞系的转录组响应较为一致; 但在SN38耐药细胞系中, HT29细胞系转录组响应模式与其它2个细胞系显著不同. 野生株和耐药株之间的蛋白质组比较分析显示, 发生变化的蛋白质与转录本有较大程度的重合; 与转录组数据不同的是, LoVo和HT29的蛋白质丰度受药物的影响较大, 但从差异蛋白质功能聚类来看, LoVo和HCT116呈现相似性. 比较分析结果还表明, Oxaliplatin在3个细胞系中引发的蛋白质丰度响应明显低于SN38造成的蛋白质丰度变化. 从野生型和耐药型结肠癌细胞系的转录组和蛋白质组的整合分析出发, 获得了新的候选耐药性相关蛋白. 本研究可能为结直肠癌耐药性机制研究奠定了实验基础, 提供了另一种启发性的思路.
This study examined 3 colorectal cancer cell lines, HCT116, LoVo, and HT29, each of which contained both wild-type and Oxaliplatin/SN38-resistant strains. Transcriptomic and proteomic analyses were performed. By analyzing the differential gene expression between wild-type and resistant strains, it was found that the transcriptomic patterns of HCT116 and LoVo wild-type cell line appeared similar, whereas both were different from HT29. In view of different expression genes(DEGs) of the cell lines responding to oxaliplatin or SN38, the transcriptomes of wild cell lines were different from that obtained from the drug resistant cell lines. Moreover, among oxaliplatin resistant cell lines, the transcriptomic responses were consistent, but in SN38 resistant cell lines, the relevant changes were complicated, particularly in HT29 cells. Based on comparison of different expression proteins(DEPs) in these cells, DEPs were overlapped with DEGs somehow. In contrast to transcriptomes, the protein abundance in Lovo and HT29 was sensitively impacted by drugs, while the functional clustering derived from DEPs in LoVo and HCT116 was comparable. By analyzing the commonly regulated genes in both the transcriptome and proteome, we identified candidate drug resistance-related proteins. Specifically for drugs, the abundance responses of proteins in these cell lines initiated by oxaliplatin were significantly lower than these induced by SN38. Taking all analysis to gene expression status in wild and drug resistance cell lines together, this study indeed sets up a solid dataset to explore the molecular mechanism of drug resistance and provides an omic clue in colorectal cancer research.
Colorectal cancer / Oxaliplatin / SN38 / Drug resistance
支持信息见http: //www.cjcu.jlu.edu.cn/CN/10.7503/20250049.
| [1] |
Siegel R. L., Giaquinto A. N., Jemal A., CA⁃Cancer J. Clin., 2024, 74(1), 12—49 |
| [2] |
Bray F., Laversanne M., Sung H., Ferlay J., Siegel R. L., Soerjomataram I., Jemal A., CA⁃Cancer J. Clin., 2024, 74(3), 229—263 |
| [3] |
Woynarowski J. M., Chapman W. G., Napier C., Herzig M. C. S., Juniewicz P., Mol. Pharmacol., 1998, 54(5), 770—777 |
| [4] |
Hsiang Y. H., Hertzberg R., Hecht S., Liu L. F., J. Biol. Chem., 1985, 260(27), 14873—14878 |
| [5] |
Maindrault⁃Goebel F., de Gramont A., Louvet C., André T., Carola E., Gilles V., Lotz J. P., Tournigand C., Mabro M., Molitor J. L., Artru P., Izrael V., Krulik M., Ann. Oncol., 2000, 11(11), 1477—1483 |
| [6] |
André T., Louvet C., Maindrault⁃Goebel F., Couteau C., Mabro M., Lotz, J. P., Gilles⁃Amar V., Krulik M., Carola E., Izrael V., de Gramont A., Eur. J. Cancer, 1999, 35(9), 1343—1347 |
| [7] |
Hashemi M., Esbati N., Rashidi M., Gholami S., Raesi R., Bidoki S. S., Goharrizi M. A. S. B., Motlagh Y. S. M., Khorrami R., Tavakolpournegari A., Nabavi N., Zou R. J., Mohammadnahal L., Entezari M., Taheriazam A., Hushmandi K., Transl. Oncol., 2024, 40, 101846 |
| [8] |
Faivre S., Chan D., Salinas R., Woynarowska B., Woynarowski J. M., Biochem. Pharmacol., 2003, 66(2), 225—237 |
| [9] |
Saurav S., Karfa S., Vu T., Liu Z. P., Datta A., Manne U., Samuel T., Datta P. K., Cancers, 2024, 16(20), 3491 |
| [10] |
Voigt W., Matsui S., Yin M. B., Burhans W. C., Minderman H., Rustum Y. M., Anticancer Res., 1998, 18(5A), 3499—3505 |
| [11] |
Wang Q. Y., Shen X. F., Chen G., Du J. F., Cancers, 2022, 14(12), 2928 |
| [12] |
Zhu G. X., Gao D., Shao Z. Z., Chen L., Ding W. J., Yu Q. F., Mol. Med. Rep., 2021, 23(2), 105 |
| [13] |
Turkington R. C., Longley D. B., Allen W. L., Stevenson L., McLaughlin K., Dunne P. D., Blayney J. K., Salto⁃Tellez M., van Schaeybroeck S., Johnston P. G., Cell Death Dis., 2014, 5, e1046 |
| [14] |
Jensen N. F., Stenvang J., Beck M. K., Hanáková B., Belling K. C., Do K. N., Viuff B., Nygård S. B., Gupta R., Rasmussen M. H., Tarpgaard L. S., Hansen T. P., Budinská E., Pfeiffer P., Bosman F., Tejpar S., Roth, A., Delorenzi M., Andersen C. L., Rømer M. U., Brünner N., Moreira J. M. A., Mol. Oncol., 2015, 9(6), 1169—1185 |
| [15] |
Ritchie M. E., Phipson B., Wu D., Hu Y., Law C. W., Shi W., Smyth G. K., Nucleic Acids Res., 2015, 43(7), e47 |
| [16] |
Bolstad B. M., Irizarry R. A., Åstrand M., Speed T. P., Bioinformatics, 2003, 19(2), 185—193 |
| [17] |
Benjamini Y., Hochberg Y., J. R. Stat. Soc. B, 1995, 57(1), 289—300 |
| [18] |
Langmead B., Trapnell C., Pop M., Salzberg S. L., Genome Biol., 2009, 10(3), R25 |
| [19] |
Li B., Dewey C. N., BMC Bioinformatics, 2011, 12, 323 |
| [20] |
Savitski M. M., Wilhelm M., Hahne H., Kuster B., Bantscheff M., Mol. Cell. Proteomics, 2015, 14(9), 2394—2404 |
| [21] |
Berg K. C. G., Eide P. W., Eilertsen I. A., Johannessen B., Bruun J., Danielsen S. A., Bjørnslett, M., Meza⁃Zepeda L. A., Eknæs M., Lind G. E., Myklebost O., Skotheim R. I., Sveen A., Lothe R. A., Mol. Cancer, 2017, 16, 116 |
| [22] |
Yeung T. M., Gandhi S. C., Wilding J. L., Muschel R., Bodmer W. F., Proc. Natl. Acad. Sci., 2010, 107(8), 3722—3727 |
| [23] |
Kleivi K., Teixeira M. R., Eknæs M., Diep C. B., Jakobsen K. S., Hamelin R., Lothe R. A., Cancer Genet. Cytogenet., 2004, 155(2), 119—131 |
| [24] |
Wold S., Sjöström M., Eriksson L., Chemometr. Intell. Lab., 2001, 58(2), 109—130 |
| [25] |
Hlavca S., Chan W. H., Engel R. M., Abud H. E., Cancer Metastasis Rev., 2024, 43(1), 379—391 |
| [26] |
Hao J. J., Huang J. S., Hua C. Y., Zuo Y., Yu W. D., Wu X. J., Li L. R., Xue G. Q., Wan X. Y., Ru L. Y., Guo Z. Y., Han S. L., Deng W. G., Lin F., Guo W., PLOS Biol., 2023, 21(9), e3002256 |
| [27] |
Fu Z. W., Wu T. T., Gao C., Wang L. L., Zhang Y., Shi C., Acta Pharm. Sin. B, 2024, 14(12), 5305—5320 |
| [28] |
Stevenson L., Allen W. L., Proutski I., Stewart G., Johnston L., McCloskey K., Wilson P. M., Longley D. B., Johnston P. G., PLoS One, 2011, 6(5), e20276 |
| [29] |
Wang Y. X., Zhou H. K., Liu Y., Zhao X. Y., Wang S. H., Lin Z. H., Cancer Cell Int., 2025, 25(1), 41 |
| [30] |
Sugimachi K., Yokobori T., Iinuma H., Ueda M., Ueo H., Shinden Y., Eguchi H., Sudo T., Suzuki A., Maehara Y., Mori M., Mimori K., Ann. Surg. Oncol., 2014, 21(11), 3680—3690 |
| [31] |
Huang C. Y., Wei P. L., Batzorig U., Makondi P. T., Lee C. C., Chang Y. J., Int. J. Mol. Sci., 2023, 24(13), 10951 |
| [32] |
Alam F., Mezhal F., EL Hasasna H., Nair V. A., Aravind S., Saber Ayad M., El⁃Serafi A., Abdel⁃Rahman W. M., Tumor Biol., 2017, 39(9), doi: 10.1177/1010428317714634 |
| [33] |
Osawa K., Nakarai C., Akiyama M., Hashimoto R., Tsutou A., Takahashi J., Takaoka Y., Kawamura S., Shimada E., Tanaka K., Kozuka M., Yamamoto M., Kido Y., Asian Pac. J. Cancer Prev., 2012, 13(5), 2311—2314 |
| [34] |
Singhabahu R., Gamage, S. M. K., Gopalan V., Cancer Pathog. Ther., 2024, 2(2), 65—73 |
| [35] |
Perraud A. L., Shen B., Dunn C. A., Rippe K., Smith M. K., Bessman M. J., Stoddard B. L., Scharenberg A. M., J. Biol. Chem., 2003, 278(3), 1794—1801 |
| [36] |
He Z., Yu L. H., Luo S. Y., Li M. Z., Li J. B., Li Q., Sun Y., Wang C. B., BMC Cancer, 2017, 17, 140 |
| [37] |
Min H. Y., Cho J., Sim J. Y., Boo H. J., Lee J. S., Lee S. B., Lee Y. J., Kim S. J., Kim K. P., Park I. J., Hong S. M., Zhang X. L., Zhang Z. G., Park R. W., Lee H. Y., Clin. Transl. Med., 2022, 12(7), e986 |
| [38] |
Wei J. L., Fu Z. X., Fang M., Zhou Q. Y., Zhao Q. N., Guo J. B., Lu W. D., Wang H., Tumor Biol., 2014, 35(9), 9185—9194 |
| [39] |
Qin J., Hu S. S., Lou J. W., Xu M., Gao R., Xiao Q. N., Chen Y. H., Ding M. Z., Pan Y. Q., Wang S. K., Int. Immunopharmacol., 2024, 137, 112487 |
/
| 〈 |
|
〉 |