2-甲基-5-氨基苯酚的半连续流合成
Semi-continuous Flow Synthesis of 2-Methyl-5-aminophenol
2-甲基-5-氨基苯酚是一种重要的活性中间体, 可广泛应用于染料、 医药及化妆品领域, 市场需求持续增长. 然而, 其传统工业生产存在能耗高、 反应时间长及安全性等问题. 本文基于连续流反应器的技术优势, 开发了一种2-甲基-5-氨基苯酚的半连续流合成工艺. 通过将3个关键中间体的生产工艺改造为连续流工艺, 使反应时间从12 h大幅缩短至4 min, 最终产物的分离收率达78.5%. 该工艺不仅显著提升了反应效率, 还优化了工艺条件, 使产物生成更加稳定, 同时有效降低了能耗和安全隐患. 研究结果为连续流技术与绿色高效工业生产的结合提供了重要参考.
2-Methyl-5-aminophenol is a crucial high-activity intermediate extensively utilized in the fields of dyes, pharmaceuticals and cosmetics, with a continuously increasing market demand. However, traditional industrial production methods are characterized by high energy consumption, long reaction times and safety concerns. Based on the technical advantages of continuous flow reactors, a semi-continuous flow synthesis process was developed in this work. By transforming the production processes of three key intermediates into continuous flow processes, the reaction time was significantly reduced from 12 h to just 4 min, and the final product separation yield reached 78.5%. This innovative approach not only significantly improved the reaction efficiency, but also optimized the process conditions, making the product generation more stable, while effectively reducing energy consumption and safety risks. The research results provide an valuable reference for the integrating continuous flow technology with green and efficient industrial production.
Micro-channel reactor / Fixed-bed reactor / Catalytic hydrogenation / Nitration reaction
| [1] |
Yuan H. Y., Yin W. H., Hu J. L., Li Y., Nat. Commun., 2023, 14(1), 1841 |
| [2] |
Li X. C., Cheng Y., Wang X. D., Tong S., Wang M. X., Chem. Sci., 2024, 15(10), 3610—3615 |
| [3] |
Fnaiche A., Mélin L., Suárez N. G., Paquin A., Vu V., Li F. L., Allali⁃Hassani A., Bolotokova A., Allemand F., Gelin M., Cotelle P., Woo S., LaPlante S. R., Barsyte⁃Lovejoy D., Santhakumar V., Vedadi M., Guichou J. F., Annabi B., Gagnon A., Bioorg. Med. Chem. Lett., 2023, 95, 129488 |
| [4] |
Raza M. A., Farwa U., Ashraf A., Poyraz E. B., Yesilbag S., Agar E., Al⁃Sehemi A. G., Spectrochim. Acta A, 2023, 299, 122864 |
| [5] |
Rak M., Menge A., Tesch R., Berger L. M., Balourdas D. I., Shevchenko E., Krämer A., Elson L., Berger B. T., Abdi I., Wahl L. M., Poso A., Kaiser A., Hanke T., Kronenberger T., Joerger A. C., Müller S., Knapp S., J. Med. Chem., 2024, 67(5), 3813—3842 |
| [6] |
Jiang D. L., Zhao X. Y., Chemical Safety Environment, 2024, 37(07), 30—37 |
| [7] |
江丹灵, 赵祥有. 化工安全与环境, 2024, 37(07), 30—37 |
| [8] |
Yu H. W., Zhao J. Y., Zhou P. C., Yu Z. Q., Zhejiang Chemical Industry, 2020, 51(11), 26—31 |
| [9] |
俞航伟, 赵金阳, 周朋成, 余志群. 浙江化工, 2020, 51(11), 26—31 |
| [10] |
Zeng L. Y., Mao M. Z., Wang W., Wang L., Zhang J. G., Ning B. K., Chemical Reagents, 2018, 40(11), 1054—1058 |
| [11] |
曾丽媛, 毛明珍, 王威, 王伦, 张建功, 宁斌科. 化学试剂, 2018, 40(11), 1054—1058 |
| [12] |
Mo F. Y., Qiu D., Jiang Y. B., Zhang Y., Wang J. B., Tetrahedron Lett., 2011, 52(4), 518—522 |
| [13] |
Yu Z. Q., Lu G. J., Chen J. Y., Xie S. T., Su W. K., J. Flow Chem., 2018, 8(2), 51—57 |
| [14] |
Liu H., Liu D. M., Sun H. T., Xia C., Su X. B., Chem. J. Chinese Universities, 2024, 45(07), 20240024 |
| [15] |
刘豪, 刘冬梅, 孙浩田, 夏超, 苏贤斌. 高等学校化学学报, 2024, 45(7), 20240024 |
| [16] |
Yang Q., Li W. Q., Huang S. T., Li J. P., Liu T., Huang C., Chem. J. Chinese Universities, 2023, 44(6), 20220671 |
| [17] |
杨棋, 李伟强, 黄顺桃, 李靖鹏, 刘腾, 黄超. 高等学校化学学报, 2023, 44(6), 20220671 |
| [18] |
Li S. J., Yang Y., Cui Y. Y., Su X. B., Chem. J. Chinese Universities, 2020, 41(7), 1559—1566 |
| [19] |
李士杰, 杨洋, 崔营营, 苏贤斌. 高等学校化学学报, 2020, 41(7), 1559—1566 |
| [20] |
Cameron A., Fisher B., Rizzacasa M., Tetrahedron, 2018, 74(12), 1203—1206 |
| [21] |
Cheng D., Chen F. E., Chemical Industry and Engineering Progress, 2019, 38(1), 556—575 |
| [22] |
程荡, 陈芬儿. 化工进展, 2019, 38(1), 556—575 |
| [23] |
Deng H., Liao Q., Lin Y. B., Chin. J. Pharmaceuticals, 2005, 36(3), 140—147 |
| [24] |
邓洪, 廖齐, 林原斌. 中国医药工业杂志, 2005, 36(3), 140—147 |
| [25] |
Lindeque R. M., Woodley J. M., Catalysts, 2019, 9(3), 262 |
| [26] |
Hu Y. J., Chen J., Wang Y. Q., Zhu N., Fang Z., Xu J. H., Guo K., Chem. Eng. J., 2022, 437, 135400 |
| [27] |
Sugisawa N., Nakamura H., Fuse S., Catalysts, 2020, 10(11), 1321 |
| [28] |
Campbell Z. S., Parker M., Bennett J. A., Yusuf S., Al-Rashdi A. K., Lustik J., Li F. X., Abolhasani M., Chem. Mater., 2018, 30(24), 8948—8958 |
| [29] |
Britton J., Raston C. L., Chem. Soc. Rev., 2017, 46(5), 1250—1271 |
| [30] |
Liu M. L., Wan L., Gao L., Cheng D., Jiang M. F., Chen F. E., ACS Sustain. Chem. Eng., 2023, 11(40), 14682—14690 |
| [31] |
Feng K. B., Chen J., Gu S. X., Wang H. F., Chen F. E., Chin. J. Org. Chem., 2024, 44(2), 378—397 |
| [32] |
冯康博, 陈炯, 古双喜, 王海峰, 陈芬儿. 有机化学, 2024, 44(2), 378—397 |
| [33] |
Baumann M., Baxendale I. R., Beilstein J. Org. Chem., 2015, 11, 1194—1219 |
| [34] |
Baumann M., Moody T. S., Smyth M., Wharry S., Org. Process Res. Dev., 2020, 24(10), 1802—1813 |
| [35] |
Duan X. N., Yin J. B., Huang M. M., Wang P. X., Zhang J. S., Chem. Eng. Sci., 2022, 251, 117483 |
| [36] |
Rahman M. D. T., Wharry S., Smyth M., Manyar H., Moody T. S., Synlett, 2020, 31(6), 581—586 |
| [37] |
Song Q., Lei X. G., Yang S., Wang S., Wang J. H., Chen J. J., Xiang Y., Huang Q. W., Wang Z. Y., Molecules, 2022, 27(16), 5139 |
| [38] |
Jiang R., Dong Y. M., Yang J. H., Zhao T. S., Chen X. Q., Speciality Petrochemicals, 2013, 30(1), 12—16 |
| [39] |
蒋锐, 董燕敏, 杨金会, 赵天生, 陈兴权. 精细石油化工, 2013, 30(1), 12—16 |
| [40] |
D'Attoma J., Camara T., Brun P. L., Robin Y., Bostyn S., Buron F., Routier S., Org. Process Res. Dev., 2017, 21(1), 44—51 |
| [41] |
Majeed M. H., Shayesteh P., Tunå P., Persson A. R., Gritcenko R., Wallenberg L. R., Ye L., Hulteberg C., Schnadt J., Wendt O. F., Chem. Eur. J., 2019, 25(59), 13591—13597 |
| [42] |
Akhtar R., Zahoor A. F., Rasool N., Ahmad M., Ali K. G., Mol. Divers., 2022, 26(3), 1837—1873 |
| [43] |
Li W. J., Jiang M. F., Liu M. J., Ling X., Xia Y. Q., Wan L., Chen F. E., Chem. Eur. J., 2022, 28(33), e202200700 |
/
| 〈 |
|
〉 |