催化剂调控多元醇与2-硝基芳烃的选择性氢转移反应
Catalyst-modulated Selective Hydrogen Transfer Reactions of Polyols with 2-Nitroaromatics
将生物质衍生多元醇选择性转化为含氮化合物是可持续化学领域的一项艰巨挑战. 虽然氢转移策略已成为替代传统还原胺化的一种环境友好型方法, 但在多元醇转化过程中仍然存在难以精确调控C—C键选择性断裂的难题. 本文报道了一种通过不同催化体系调控多元醇选择性C—C键的裂解, 从而生成不同含氮化合物的方法. 该体系无需外加还原剂, 在温和条件下高效合成了喹喔啉及吲哚类含氮杂环化合物. 底物普适性研究表明, 含富电子基团(或缺电子基团)的芳胺及吲哚底物均能以中等至优异产率获得目标产物. 该策略突破了传统还原胺化对苛刻条件与外源还原剂的依赖, 为生物质转化提供了原子经济性高、环境友好的新途径.
The selective conversion of biomass-derived polyols into nitrogen-containing compounds remains a formidable challenge in sustainable chemistry. Although hydrogen borrowing strategies have emerged as environmentally benign alternatives to traditional reductive amination, precise control over selective C—C bond cleavage during polyol conversion persists as a significant difficulty. Herein, we report an approach utilizing distinct catalytic systems to regulate selective C—C bond cleavage of polyols, thereby generating diverse nitrogen-containing compounds. This system efficiently synthesizes quinoxaline and indole-type N-heterocyclic compounds under mild conditions without requiring external reducing agents. Substrate scope studies demonstrate that both electron-rich and electron-deficient aromatic amines and indole substrates afford the target products in moderate to excellent yields. This strategy overcomes the reliance of traditional reductive amination on harsh conditions and external reductants, thus providing a new, atom-economical, and environmentally benign pathway for biomass transformation.
Polyols / Hydrogen transfer strategy / N-heterocyclic compounds
| [1] |
Mckendry P., Bioresour. Technol., 2002, 83(1), 37—46 |
| [2] |
Huber G. W., Iborra S., Corma A., Chem. Rev., 2006, 106(9), 4044—4098 |
| [3] |
Ragauskas A. J., Williams C. K., Davison B. H., Britovsek G., Cairney J., Eckert C. A., Frederick W. J., Hallett J. P., Leak D. J., Liotta C. L., Mielenz J. R., Murphy R., Templer R., Tschaplinski T., Science, 2006, 311(5760), 484—489 |
| [4] |
Kong L. Z., Miao G., Luo H., Sun Y. H., Chem. J. Chinese Universities, 2020, 41(1), 20190561 |
| [5] |
孔令照, 苗改, 罗虎, 孙予罕. 高等学校化学学报, 2020, 41(1), 20190561 |
| [6] |
Chen W. S., Luo L., Liu Y. G., Zhou H., Kong X. G., Li Z. H., Duan H. H., Chem. J. Chinese Universities, 2022, 43(2), 20210683 |
| [7] |
陈望松, 罗兰, 刘玉广, 周华, 孔祥贵, 栗振华, 段昊泓. 高等学校化学学报, 2022, 43(2), 20210683 |
| [8] |
Zhou C. H. C., Beltramini J. N., Fan Y. X., Lu G. Q. M., Chem. Soc. Rev., 2008, 37(3), 527—549 |
| [9] |
Shen Y. H., Zhang S. H., Li H. J., Ren Y., Liu H. C., Chem. Eur. J., 2010, 16(25), 7368—7371 |
| [10] |
Watanabe M., Lida T., Aizawa Y., Aida T. M., Inomata H., Bioresour. Technol., 2007, 98(6), 1285—1290 |
| [11] |
Sun J. Y., Liu H. C., Green Chem., 2011, 13(1), 135—142 |
| [12] |
Huber G. W., Cortright R. D., Dumesic J. A., Angew. Chem. Int. Ed., 2004, 43(12), 1549—1551 |
| [13] |
Zhang Z., Wang M., Zhou H. R., Wang F., J. Am. Chem. Soc., 2021, 143(17), 6533—6541 |
| [14] |
Froidevaux V., Negrell C., Caillol S., Pascault J. P., Boutevin B., Chem. Rev., 2016, 116(22), 14181—14224 |
| [15] |
Dai X. C., Adomeit S., Rabeah J., Kreyenschulte C., Brückner A., Wang H. L., Shi F., Angew. Chem. Int. Ed., 2019, 58(16), 5251—5255 |
| [16] |
Pelckmans M., Renders T., van de Vyver S., Sels B. F., Green Chem., 2017, 19(22), 5303—5331 |
| [17] |
Yan Q., Wu X., Jiang H., Wang H., Xu F., Li H., Zhang H., Coord. Chem. Rev., 2024, 502, 215622 |
| [18] |
Hameury S., Bensalem H., Vigier K. D., Catalysts, 2022, 12(11), 1306 |
| [19] |
Rathod P. V., Deonikar A. G., Puguan J. M. C., Kim H., Fuel, 2020, 264, 116822 |
| [20] |
Edwards M. G., Jazzar R. F. R., Paine B. M., Shermer D. J., Whittlesey M. K., Williams J. M. J., Edney D. D., Chem. Commun., 2004, 1, 90—91 |
| [21] |
Corma A., Navas J., Sabater M. J., Chem. Rev., 2018, 118(4), 1410—1459 |
| [22] |
Irrgang T., Kempe R., Chem. Rev., 2019, 119(4), 2524—2549 |
| [23] |
Kim Y., Li C. J., Green Synth. Catal., 2020, 1(1), 1—11 |
| [24] |
Shen G. F., Andrioletti B., Queneau Y., Curr. Opin. Green Sustain. Chem., 2020, 26, 100384 |
| [25] |
Jia L., Wang X., Gao X. L., Makha M., Wang X. C., Li Y. H., Green Synth. Catal., 2022, 3(3), 259—264 |
| [26] |
Liu M. J., Li H. J., Zhang J., Liu H. F., Wang F., Angew. Chem. Int. Ed., 2024, 63(5), e202315795 |
| [27] |
Zuo H. L., Lei S. M., Zhang R., Li Y. X., Chen W., Chem. J. Chinese Universities, 2021, 42(9), 20210313 |
| [28] |
左怀龙, 雷思敏, 张锐, 李玉新, 陈伟. 高等学校化学学报, 2021, 42(9), 20210313 |
| [29] |
Charpe V. P., Ragupathi A., Sagadevan A., Hwang K. C., Green Chem., 2021, 23(14), 5024—5030 |
| [30] |
Liu S. S., Zhao C., Zhou X. Y., Ma Y. M., Journal of Shaanxi University of Science, 2020, 385), 91—95(刘珊珊, 赵晨, 周鲜颖, 马养民. 陕西科技大学学报, 2020, 38(5), 91—95 |
| [31] |
Chakrabarti K., Majia M., Kundu S., Green Chem., 2019, 21(8), 1999—2004 |
| [32] |
Li J. X., Zhang J. L., Yang H. M., Gao Z., Jiang G. X., J. Org. Chem., 2017, 82(1), 765—769 |
| [33] |
Kim K., Kim H. Y., Oh K., RSC Adv., 2020, 10(52), 31101—31105 |
| [34] |
Su J. K., Hu X. Y., Huang H., Guo Y., Song Q. L., Nat. Commun., 2021, 12(1), 4986 |
| [35] |
Liu A., Ni C. F., Xie Q. Q., Hu J. B., Angew. Chem. Int. Ed., 2022, 61(8), e202115467 |
| [36] |
Liu S. S., Liang J. H., Zhang P. J., Li Z. Z., Jiao L. Y., Jia W., Ma Y. M., Szostak M., Org. Chem. Front., 2022, 10(1), 22—29 |
| [37] |
Martins B. M., Blaser M., Feliks M., Ullmann G. M., Buckel W., Selmer T., J. Am. Chem. Soc., 2011, 133(37), 14666—14674 |
| [38] |
Feliks M., Martins B. M., Ullmann G. M., J. Am. Chem. Soc., 2013, 135(39),14574—14585 |
| [39] |
Shisler K. A., Broderick J. B., Arch. Biochem. Biophys., 2014, 546, 64—71 |
| [40] |
Nguyen T. B., Ermolenko L., Corbin M., Al⁃Mourabit A., Org. Chem. Front., 2014, 1(10), 1157—1160 |
| [41] |
Liu S. S., Wan J., Zhang Y. Y., Luo W. Y., Dong W. W., Wang C., Jiao L. Y., Green Chem., 2025, 27(8),2293—2301 |
| [42] |
Ding C. C., Li S. C., Feng K. L., Ma C., Green Chem., 2021, 23(15), 5542—5548 |
/
| 〈 |
|
〉 |