温敏型药物控释系统的构建及光热联合化学疗法协同抗肿瘤作用研究
梁家宁 , 符开奇 , 周瑞 , 叶丽莉 , 王丽 , 刘兆敏 , 孙琳 , 董妍
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (09) : 50 -61.
温敏型药物控释系统的构建及光热联合化学疗法协同抗肿瘤作用研究
Construction of Thermosensitive Drug Controlled Release System for Highly Efficient Chemo-photothermal Tumor Therapy
化疗和热疗联用能有效覆盖整个肿瘤部位, 起到协同治疗的效果. 本文以具有独特孔道结构和良好化学稳定性的共价有机骨架(COFs)作为壳, 光热性质良好的Fe3O4纳米粒子作为核, 制备了粒径约为200 nm的核壳结构药物载体. 通过吸附作用将抗肿瘤药物盐酸阿霉素(DOX)封装至COFs孔道内, 随后以温敏材料聚N-异丙基丙烯酰胺(PNIPAM)进行修饰, 封堵在复合材料表面. 采用波长808 nm的激光照射使 Fe3O4纳米粒子迅速将光能转化为热能, 导致温度发生变化. 一方面, 升温使PNIPAM达到临界温度发生相变, 其结构向内收缩, 从而实现对药物分子的可控释放; 另一方面, 产生的高温可有效杀灭癌细胞, 起到化疗和热疗联用抗肿瘤的效果. 最后, 在复合材料表面嫁接具有癌细胞主动靶向作用的叶酸碳点, 实现叶酸介导的靶向温度响应控释机制, 构建了温敏型药物控释系统, 并联合化学疗法和光热疗法, 有效提升了抗肿瘤效果.
Combination of chemotherapy and photothermal therapy can cover the entire tumor area, achieving an effective synergistic treatment performance. In this study, covalent organic frameworks(COFs) with unique pore structure and excellent chemical stability were utilized as the shell, and Fe3O4 nanoparticles with favorable photothermal properties were adopted as the core to construction a core-shell structured drug carrier with a particle size of approximately 200 nm. The antitumor drug doxorubicin hydrochloride(DOX) was encapsulated into the pores of COFs. Subsequently, the composite material was modified with the thermosensitive material, poly(N- isopropylacrylamide)(PNIPAM), which was used to seal the surface of the composite. Furthermore, under irradiation with 808 nm laser, Fe3O4 nanoparticles rapidly converted light energy into heat energy, thereby generating a temperature change that achieve two purposes, on the one hand, the temperature change reached the lower critical solution temperature of PNIPAM for phase transition, causing the structure contracts inward and thus achieving the controlled release of drug molecules. On the other hand, the high temperature could kill cancer cells effectively, thus exhibited chemo-photothermal tumor therapy performance. Finally, carbon dots were grafted on the surface of the system to achieve the folic acid-mediated target controlled release mechanism, and a temperature-sensitive drug controlled release system was constructed successfully. The system exhibited highly antitumor performance by combining with chemotherapy and photothermal therapy.
共价有机骨架 / 纳米载体 / 药物递送 / 光热联合化学疗法 / 抗肿瘤
Covalent organic framework / Nanocarrier / Drug delivery / Photothermal combined chemotherapy / Antitumor
| [1] |
Anonymous, Saudi Med. J., 2024, 45(3), 326—327 |
| [2] |
Li B. Q., Shao H. L., Gao L., Li H., Sheng H. G., Zhu L. Q., Drug Deliv., 2022, 29(1), 2130—2161 |
| [3] |
Zinn S., Vazquez⁃Lombardi R., Zimmermann C., Sapra P., Jermutus L., Christ D., Nat. Cancer, 2023, 4(2), 165—180 |
| [4] |
Farran B., Montenegro R. C., Kasa P., Pavitra E., Huh Y. S., Han Y. K., Kamal M. A., Nagaraju G. P., Raju G. S. R., Mat. Sci. Eng. C: Mater., 2020, 107, 110341 |
| [5] |
Xia Q., Zhang Y., Zhang H., Zhang X., Wu X. D., Wang Z. Q., Yan R., Jin Y. X., J. Phys. Chem. B, 2022, 10(39), 8046—8057 |
| [6] |
Li S. Q., Zhang H., Bao Y. J., Zhang H. L., Wang J. C., Liu M. Y., Yan R., Wang Z. Q., Wu X. D., Jin Y. X., ACS Appl. Mater. Interfaces, 2024, 16(13), 16653—16668 |
| [7] |
Yan X. J., Meng L. Z., Zhang X. Z., Deng Z. C., Gao B. W., Zhang Y. J., Yang M., Ma Y. A., Zhang Y. Y., Tu K. S., Zhang M. Z., Xu Q. R., Mol. Ther., 2023, 31(5), 1383—1401 |
| [8] |
Zhao Y. H., Li Y., Zhu R., Feng R. Y., Cui H. Y., Yu X., Huang F. R., Zhang R. X., Chen X. K., Li L., Chen Y. H., Liu Y. H., Wang J. H., Du G. H., Liu Z. H., Signal Transduct Tar., 2023, 8(1), 224 |
| [9] |
Wang L. D., Sun J. Y., Wang L., Li Y., Hu Z. Y., SU B. L., Chem. Res. Chinese Universities, 2025, 41(2), 351—357 |
| [10] |
Rai P., Mallidi S., Zheng X., Rahmanzadeh R., Mir Y., Elrington S., Khurshid A., Hasan T., Adv. Drug Deliver. Rev., 2010, 62(11), 1094—1124 |
| [11] |
Wang T., Hu X., Yang Y. J., Wu Q., He C. D., He X., Wang Z. Y., Mao X., Int. J. Mol. Sci., 2022, 23(18), 10743 |
| [12] |
Li Y., Chen J., Xia Q., Shang J., He Y. J., Li Z., Chen Y. Y., Gao F., Yu X., Yuan Z. T., Yin P. H., J. Nanobiotechnol., 2024, 22(1), 630 |
| [13] |
Pei H. W., Zhang J., Sun Z. Y., Chem. Res. Chinese Universities, 2025, 41(1), 21—32 |
| [14] |
Deng X. T., Zhao R. L., Tang Y. F., Yi M., Wang D., Lin W., Wang G. L., J. Nanobiotechnol., 2024, 22(1), 711 |
| [15] |
Lin D., Lv W. X., Qian M., Jiang G. W., Lin X. J., Gantulga D., Wang Y., Biomaterials, 2025, 314, 122869 |
| [16] |
Khalili N. R., Badiei A., Pirkani Z., Ziarani G. M., Vojoudi H., Golmohamadi A., Varma R. S., J. Mater. Chem. B, 2024, 12(32), 7915—7933 |
| [17] |
Khalili N. R., Dehkordi A. B., Amiri A., Ziarani G. M., Badiei A., Cool P., ACS Appl. Mater. Interfaces, 2024, 16(22), 28245—28262 |
| [18] |
Huang G. Q., Zhang L. Y., Feng J. H., Wu D., Wu L. B., Pan W. L., Jiang Y., Chen M., Chen J. X., Shui P. X., Small, 2025, 21(7), 2407553 |
| [19] |
Mahmoudian M. H., Azari A., Jahantigh A., Sarkhosh M., Yousefi M., Razavinasab S. A., Afsharizadeh M., Shahraji F. M., Pasandi A. P., Zeidabadi A., Bardsiri T. I., Ghasemian M., Environ. Res., 2023, 236, 116773 |
| [20] |
Liu J., Chen B., Zhang J. J., Chem. Res. Chinese Universities, 2020, 36(5), 927—933 |
| [21] |
Liu B. T., Pan X. H., Zhang D. Y., Wang R., Chen J. Y., Fang H. R., Liu T. F., Angew. Chem. Int. Ed., 2021, 60(49), 25701—25707 |
| [22] |
Wick M. R., Semin. Diagn. Pathol., 2019, 36(5), 303—311 |
| [23] |
Dada S. N., Babanyinah G. K., Tetteh M. T., Palau V. E., Walls Z. F., Krishnan K., Croft Z., Khan A. U., Liu G. L., Wiese T. E., Glotser E., Mei H., ACS Omega, 2022, 7(27), 23322—23331 |
| [24] |
Mu X. P., Zhang F. Q., Kong C. F., Zhang H. M., Zhang W. J., Ge R., Liu Y., Jiang J. L., Int. J. Nanomed., 2017, 12, 2899—2911 |
| [25] |
Li Y., Xie Q. Y., Hu Q., Li C. P., Huang Z. J., Yang X. J., Guo H., Sci. Rep., 2016, 6, 30651 |
| [26] |
Xu H., Gao J., Jiang D. L., Nat. Chem., 2015, 7(11), 905—912 |
| [27] |
Raghuwanshi V. S., Mendoza D. J., Browne C., Ayurini M, . Gervinskas G., Hooper J. F., Mata J., Wu C. M., Simon G. P., Garnier G., J. Colloid Interface Sci., 2023, 652, 1609—1619 |
/
| 〈 |
|
〉 |