基于高氧空位浓度和高Ni3+/Ni2+比值NiO电催化剂增强甲醇电催化氧化的性能
卢剑天 , 赵曼帧 , 张保华 , 宋爽 , 张玉微
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (07) : 70 -79.
基于高氧空位浓度和高Ni3+/Ni2+比值NiO电催化剂增强甲醇电催化氧化的性能
Enhancing Methanol Oxidation Reaction by NiO Featuring High Concentration of Oxygen Vacancy and Ni3+/Ni2+ Ratio
针对镍基电催化剂在甲醇氧化反应(MOR)中活性位点不足、 导电性差和催化反应动力学速度慢等瓶颈问题, 本文通过晶格掺杂工程策略, 采用低成本钼酸铵前驱体结合煅烧工艺, 构建了氧空位与Ni3+活性位点协同增强的Mo掺杂NiO催化剂. 结果表明, 随着Mo掺杂量从0增加至28%(原子分数), 催化剂表面氧空位浓度由30.18%梯度提升至56.59%, Ni3+物种占比从65.55%增至85.91%; 当Mo掺杂量为28%时, 在1.0 mol/L KOH/1.0 mol/L CH3OH电解液中, 1.7 V(vs. RHE)电位下获得280.8 mA/cm2的电流密度, 较未掺杂的NiO(21.7 mA/cm2)提升12.9倍, Tafel斜率由63 mV/dec显著降低至25 mV/dec. 通过X射线衍射仪(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 X射线光电子能谱(XPS)等表征手段, 对Mo掺杂制备氧空位浓度和 Ni3+/Ni2+摩尔比可调变的NiO催化剂的形成机制和MOR电催化效果进行研究, 初步揭示了其原理和构效关联, 为设计具有高活性位点浓度的高效直接甲醇燃料电池(DMFC)阳极催化剂提供了新思路.
To address the critical challenges of insufficient active sites, poor conductivity, and sluggish reaction kinetics in nickel-based electrocatalysts for methanol oxidation reaction(MOR), this study proposes a lattice doping engineering strategy. By employing a low-cost ammonium molybdate precursor coupled with a calcination process, we successfully constructed Mo-doped NiO catalysts synergistically enhanced by oxygen vacancies and Ni³⁺ active sites. Experimental results demonstrate that as the Mo doping level increases from 0 to 28%(atomic fraction), the oxygen vacancy concentration on the catalyst surface escalates progressively from 30.18% to 56.59%, while the proportion of Ni3+ species rises from 65.55% to 85.91%. At an optimal Mo doping content of 28%, the catalyst achieves a current density of 280.8 mA/cm² at 1.7 V(vs. RHE) in 1.0 mol/L KOH/1.0 mol/L CH3OH electrolyte, representing a 12.9-fold enhancement compared to undoped NiO(21.7 mA/cm2). Furthermore, the Tafel slope decreases signifi-cantly from 63 mV/dec to 25 mV/dec. Systematic characterizations via XRD, SEM, TEM and XPS elucidate the formation mechanism of Mo-doped NiO catalysts with tunable oxygen vacancy concentrations and Ni³⁺/Ni²⁺ ratios, as well as their MOR electrocatalytic performance. A preliminary structure-activity relationship is established, revealing the underlying principles of enhanced activity. This work provides a novel approach for designing efficient anode catalysts for direct methanol fuel cells(DMFCs) with high active site density.
Oxygen vacancy / Methanol oxidation reaction / Mo-doping
支持信息见http: //www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20250073.
| [1] |
Gong L., Yang Z., Li K., Xing W., Liu C., Ge J., J. Energy Chem., 2018, 27(6), 1618—1628 |
| [2] |
Ren J. T., Wang L., Chen L., Song X. L., Kong Q. H., Wang H. Y., Yuan Z. Y., Small, 2022, 19(5), 2206196 |
| [3] |
Bian H., Chen Z., Chen T., Humayun M., Zhou B., Liao W., Li Z., Zhang Z., Wang C., Liu C., Chem. Eng. J., 2023, 466, 143045 |
| [4] |
Deng Q., Li H., Pei K., Wong L. W., Zheng X., Tsang C. S., Chen H., Shen W., Ly T. H., Zhao J., Fu Q., ACS Nano, 2024, 18(49), 33718—33728 |
| [5] |
Flores K., Varda D., Hald N., Cerrón⁃Calle G. A., Roldan M. A., Garcia⁃Segura S., Appl. Catal. B: Environ., 2025, 362, 124682 |
| [6] |
Gong M., Zhou W., Tsai M. C., Zhou J., Guan M., Lin M. C., Zhang B., Hu Y., Wang D. Y., Yang J., Pennycook S. J., Hwang B. J., Dai H., Nat. Commun., 2014, 5(1), 4695 |
| [7] |
Kuai L., Geng J., Chen C., Kan E., Liu Y., Wang Q., Geng B., Angew. Chem. Int. Ed., 2014, 53(29), 7547—7551 |
| [8] |
Wang H., Lee H. W., Deng Y., Lu Z., Hsu P. C., Liu Y., Lin D., Cui Y., Nat. Commun., 2015, 6(1), 7261 |
| [9] |
Dou S., Dong C. L., Hu Z., Huang Y. C., Chen J. l., Tao L., Yan D., Chen D., Shen S., Chou S., Wang S., Adv. Funct. Mater., 2017, 27(36), 1702546 |
| [10] |
Duan Y., Sun S., Xi S., Ren X., Zhou Y., Zhang G., Yang H., Du Y., Xu Z. J., Chem. Mater., 2017, 29(24), 10534—10541 |
| [11] |
Ling T., Zhang T., Ge B., Han L., Zheng L., Lin F., Xu Z., Hu W. B., Du X. W., Davey K., Qiao S. Z., Adv. Mater., 2019, 31(16), 1807771 |
| [12] |
Zheng J., Meng D., Guo J., Liu X., Zhou L., Wang Z., Adv. Mater., 2024, 36(28), 2405129 |
| [13] |
Tong Y., Chen P. Z., Zhang M. X., Zhou T. P., Zhang L. D., Chu W. S., Wu C. Z., Xie Y., ACS Catal., 2018, 8(1), 1—7 |
| [14] |
Zhu K., Shi F., Zhu X., Yang W., Nano Energy, 2020, 73, 104761 |
| [15] |
Li H., Zhang C., Xiang W., Amin M. A., Na J., Wang S., Yu J., Yamauchi Y., Chem. Eng. J., 2023, 452, 139104 |
| [16] |
Luo N., Cai A., Pei J., Zeng X., Wang X., Yao N., Adv. Funct. Mater., 2025, doi: 10.1002/adfm.202425503 |
| [17] |
Sun J., Guo N., Shao Z., Huang K., Li Y., He F., Wang Q., Adv. Energy Mater., 2018, 8(27), 1800980 |
| [18] |
Jiang T., Xie W., Geng S., Li R., Song S., Wang Y., Chin. J. Catal., 2022, 43(9), 2434—2442 |
| [19] |
Yu Y., Pan M., Zhang Z., An Z., Wang Y., Hu X., Int. J. Hydrog. Energy, 2023, 48(71), 27679—27685 |
| [20] |
Wu S., Zou J., Zhang B., Lu J., Lin G., Zhang Y., Niu L., Analyst, 2025, 150, 1338—1346 |
| [21] |
Thangamanil C., Kumar P. V., Gurushankar K., Pushpanathan K., J. Mater. Sci. Mater. Electron., 2020, 31, 11101—11112 |
| [22] |
Zhao H. Y., Zhu L., Yin J., Jin J., Du X., Tan L., Peng Y., Xi P. X., Yan C. H., Angew. Chem. Int. Ed., 2024, 63(20), e202402171 |
| [23] |
Wang L., Zhu Y., Wen Y., Li S., Cui C., Ni F., Liu, Y., Lin H., Li Y., Peng H., Zhang B., Angew. Chem. Int. Ed., 2021, 60(19), 10577—10582 |
| [24] |
Cloud J. E., Guild C. J., Biswas S., Suib S. L., Energy Technol., 2017, 5(8), 1407—1414 |
| [25] |
Aussawasathien D., Sancaktar E., Chemengineering, 2020, 4(2), 26 |
| [26] |
Jung S. I., Nasir M., Park H. J., J. Mater. Chem. A, 2025, 13(6), 4624—4633 |
| [27] |
Mohaideen H. M., Fareed S. S., Natarajan B., Appl. Phys. A: Mater. Sci. Process., 2022, 128(4), 332 |
| [28] |
Li Y. B., Liu Y. P., Wang J., Guo Y. L., Chu K., Inorg. Chem. Front., 2020, 7(2), 455—463 |
| [29] |
Qu J. K., Dong Y. C., Zhang T., Zhao C., Wei L. T., Guan X. J., Front. Energy, 2024, 18(6), 850—862 |
| [30] |
Wang H., Zhang J., Tao S., Chem. Eng. J., 2022, 444, 136693 |
| [31] |
Huang Y. Z., Su D., Zheng L., Yang G. C., Li K., Jiang J. T., Pan Q. C., Hu S. J., Li Y. H., Li Q. Y., Wang H. Q., Zheng F. H., Qu X., Energ. Storage Mater., 2024, 71, 103678 |
| [32] |
Hao D. H., Chai R. P., Liang L., Phys. Eng., 2022, 32(3), 121 |
| [33] |
Phan V. T. T., Nguyen Q. P., Wang B., Burgess I. J., J. Am. Chem. Soc., 2024, 146(7), 4830—4841 |
| [34] |
Nikhil N. R., Chandraraj A., Shalini T., Muhammed S. N. K., Seung⁃Cheol L., Satadeep B., Neena S. J., Appl. Catal. B: Environ., 2025, 371, 125177 |
| [35] |
Yuan H., Shi L. X., Yan X. X., Chen Z. L., Li Y. P., Wu R. B., ACS Appl. Mater. Interfaces, 2019, 11(49), 45546—45553 |
| [36] |
Liao Y. Y., He R. C., Pan W. H., Li Y., Wang Y. Y., Li J., Chem. Eng. J., 2023, 464, 142669 |
| [37] |
Awad S., Al⁃Dies A. A. M., Almahdawi R., Al⁃sheqefi F. U. Y., Abdel⁃Hady E. E., Polym. Adv. Technol., 2024, 35(2), e6322 |
| [38] |
Liang J. H., Cheng H. Y., Zhao B. L., Hu Q., Xing Z. H., Zhang Y. W., Niu L., Small, 2023, 19(38), 2302149 |
/
| 〈 |
|
〉 |