尖晶石氧化物在电催化氧还原反应中的实际活性位点
Actual Active Sites in Spinel Oxides for Electrocatalytic Oxygen Reduction Reaction
以尖晶石型Co3O4为基体材料, 通过Zn2+和Al3+的选择性掺杂调控其活性位点的分布, 制备了仅保留单一Co3+(八面体位点)或Co2+(四面体位点)的ZnCo2O4和CoAl2O4模型催化剂. 通过X射线衍射(XRD)、 X射线光电子能谱(XPS)和拉曼光谱(Raman)等表征手段证实了掺杂离子对晶体结构的精确调控, 其中, Zn2+选择性占据四面体位点, 而Al3+优先取代八面体位点的Co3+, 从而分别实现了对Co3+和Co2+活性位点的单独研究. 在碱性介质氧还原反应(ORR)测试中, 半电池测试结果表明, 不同活性位点表现出显著的电催化性能差异. Co3O4展现出最优异的ORR活性, 而ZnCo2O4(仅含Co3+位点)的催化性能明显优于CoAl2O4(仅含Co2+位点), Co3O4的半波电位比ZnCo2O4高出50 mV, 而ZnCo2O4的半波电位比CoAl2O4高出120 mV, 表明八面体配位的Co3+在ORR过程中起主导作用. 原位傅里叶变换红外光谱分析结果表明, ZnCo2O4表面在反应过程中检测到明显的*O2-和*O2中间物种吸附信号, 而CoAl2O4仅表现出微弱的含氧物种吸附峰, 证实Co3+位点对关键氧中间体的吸附能力显著强于Co2+位点.
In this study, ZnCo2O4 and CoAl2O4 model catalysts retaining only a single Co3+(octahedral site) or Co2+(tetrahedral site) were prepared using spinel-type Co3O4 as the base material, and the distribution of their active sites was modulated by selective doping with Zn2+ and Al3+. The precise modulation of the crystal structure by dopant ions, in which Zn2+ selectively occupies the tetrahedral sites and Al3+ preferentially replaces Co3+ in the octahedral sites, has been confirmed by XRD, XPS and Raman spectroscopy, which enables the isolated study of Co2+ and Co3+ active sites, respectively. In the alkaline-mediated oxygen reduction reaction(ORR) test, the half-cell test results show that the different active sites exhibit significant differences in electrocatalytic performance. Co3O4 exhibits the optimal ORR activity, whereas the catalytic performance of ZnCo2O4(Co3+ sites only) is significantly better than that of CoAl2O4(Co2+ sites only), and the half-wave potential of Co3O4 is 50 mV higher than that of ZnCo2O4, while the half-wave potential of ZnCo2O4 is 120 mV higher than that of CoAl2O4, indicating that the octahedrally coordinated Co3+ plays a dominant role in the ORR process. In situ Fourier transform infrared spectroscopy analysis further revealed that obvious *O2- and *O2 intermediate species adsorption signals are detected on the surface of ZnCo2O4 during the reaction process, whereas CoAl2O4 exhibits only weak oxygen-containing species adsorption peaks, confirming that the adsorption capacity of the key oxygen intermediates at the Co3+ site is significantly stronger than that at the Co2+ site.
锌空电池 / 氧还原反应 / 非贵金属催化剂 / 尖晶石氧化物 / 电化学原位红外光谱
Zinc-air battery / Oxygen reduction reaction / Non-precious metal catalyst / Spinel oxide / In situ electrochemical infrared spectroscopy
| [1] |
Yang H., Miao J., Hung S., Chen J., Tao H., Wang X., Zhang L., Chen R., Gao J., Chen H., Dai L., Liu B., Sci. Adv., 2016, 2, e1501122 |
| [2] |
Stock D., Dongmo S., Janek J., Schröder D., ACS Energy Lett., 2019, 4, 1287—1300 |
| [3] |
Miao Q., Yang S., Xu Q., Liu M., Wu P., Liu G., Yu C., Jiang Z., Sun Y., Zeng G., Small Struct., 2022, 3, 2100225 |
| [4] |
Kang J., Xue Y., Yang J., Hu J., Zhang Q., Gu L., Selloni A., Liu L., Guo L., J. Am. Chem. Soc., 2022, 144, 8969—8976 |
| [5] |
Guo Y., Wu D., Li M., Wang K., Zhang S., He G., Yin H., Huang C., Yang B., Zhang J., Small Sci., 2022, 2, 2200035 |
| [6] |
Ranjbar S., Paraknowitsch J., Göbel C., Tomas A., J. Am. Chem. Soc., 2014, 136, 14486—14497 |
| [7] |
Liu G., Chen Y., Shi Y., Zhang M., Shen G., Qi P., Li J., Ma D., Yu F., Huang X., Adv. Mater., 2023, 35, 2304716 |
| [8] |
Zhang X., Yin H., Dang C., Nie H., Huang Z., Zheng S., Du M., Gu Z., Cao J., Wu X., Angew. Chem. Int. Ed., 2025, 64, e202425569 |
| [9] |
Zhang X., Ren K., Liu Y., Gu Z., Huang Z., Zheng S., Wang X., Guo J., Zatovsky I., Cao J., Wu X., Acta Phys. ⁃Chim. Sinica, 2024, 40, 2307057 |
| [10] |
Cao R., Lee J., Liu M., Cho J., Adv. Energy Mater., 2012, 2, 816—829 |
| [11] |
Liu X., Wang H., Chen S., Qi X., Gao H., Hui Y., Bai Y., Guo L., Ding W., Wei Z., J. Energy Chem., 2014, 23, 358—362 |
| [12] |
Ding W., Wei Z., Chen S., Qi X., Yang T., Hu J., Wang D., Wang L., Alvi S., Li L., Angew. Chem. Int. Ed., 2013, 52, 11755—11759 |
| [13] |
Li R. S., Miao Z. P., Li J., Tian X. L., Chem. J. Chinese Universities, 2023, 44(5), 20220730 |
| [14] |
李瑞松, 苗政培, 李静, 田新龙. 高等学校化学学报, 2023, 44(5), 20220730 |
| [15] |
Jeong I., Shim Y., Oh S., Yuk J., Rih J., Lee C., Lee K., Adv. Energy Mater., 2024, 14, 2402342 |
| [16] |
Wu G., Wang J., Ding W., Nie Y., Li L., Qi X., Chen S., Wei Z., Angew. Chem. Int. Ed., 2016, 55, 1340—1344 |
| [17] |
Qu W., Tang Z., Tang S., Wen H., Fang J., Lian Q., Shu D., He C., Adv. Funct. Mater., 2023, 33, 2301677 |
| [18] |
Qi S., Lei Z., Huo Q., Zhao J., Huang T., Meng N., Liao J., Yi J., Shang C., Zhang X., Yang H., Hu Q., He C., Adv. Mater., 2024, 36, 2403958 |
| [19] |
Wei C., Feng Z., Scherer G., Barber S., Horn Y., Xu Z., Adv. Mater., 2017, 29, 1606800 |
| [20] |
Kim J., Ko W., Yoo J., Paidi V., Jang H., Shepit M., Lee J., Chang H., Lee H., Jo J., Kim B., Cho S., Lierop J., Kim D., Lee K., Back S., Sung Y., Hyeon T., Adv. Mater., 2022, 34, 2107868 |
| [21] |
Wang Y., Yang Y., Jia S., Wang X., Lyu K., Peng Y., Zheng H., Wei X., Ren H., Xiao L., Wang J., Muller D., Abruña H., Hwang B., Lu J., Zhuang L., Nat. Commun., 2019, 10, 1506 |
| [22] |
Liu Z., Wang G., Zhu X., Wang Y., Zou Y., Zang S., Wang S., Angew. Chem. Int. Ed., 2020, 59, 4736—4742 |
| [23] |
Wu J., Wang X., Zheng W., Sun Y., Xie Y., Ma K., Zhang Z., Liao Q., Tian Z., Kang Z., Zhang Y., J. Am. Chem. Soc., 2022, 144, 19163—19172 |
| [24] |
Sun S., Sun Y., Zhou Y., Xi S., Ren X., Huang B., Liao H., Wang L., Du Y., Xu Z., Angew. Chem. Int. Ed., 2019, 58, 6042—6047 |
| [25] |
Yu F., Yang J., Ma J., Du J., Zhou Y., J. Alloys Compound., 2009, 468, 443—446 |
| [26] |
Liu S., Zhang B., Cao Y., Wang H., Zhang Y., Zhang S., Li Y., Gong H., Liu S., Yang Z., Sun J., ACS Energy Lett., 2023, 8, 159—168 |
| [27] |
Hao Y., Hung S., Zeng W., Wang Y., Zhang C., Kuo C., Wang L., Zhao S., Zhang Y., Chen H., Peng S., J. Am. Chem. Soc., 2023, 145, 23659—23669 |
| [28] |
Xiao Z., Huang Y., Dong C., Xie C., Liu Z., Du S., Chen W., Yan D., Tao L., Shu Z., Zhang G., Duan H., Wang Y., Zou Y., Chen R., Wang S., J. Am. Chem. Soc., 2020, 142, 12087—12095 |
| [29] |
Liu J., Bao H., Zhang B., Hua Q., Shang M., Wang J., Jiang L., ACS Appl. Mater. Interfaces, 2019, 11, 12525—12534 |
| [30] |
Zhang X. Y., Qu G., Xue D. P., Yan W. F., Zhang J. N., Chem. J. Chinese Universities, 2023, 44(5), 20220775 |
| [31] |
张小玉, 曲干, 薛冬萍, 闫文付, 张佳楠. 高等学校化学学报, 2023, 44(5), 20220775 |
| [32] |
Kukunuri S., Noguchi H J., J. Phys. Chem. C, 2020, 124, 7267—7273 |
| [33] |
Li L., Zhu J., Kong F., Wang Y., Kang C., Du C., Yin G., Matter, 2024, 7, 1517—1532 |
| [34] |
Nayak S., McPherson I., Vincent K., Angew. Chem. Int. Ed., 2018, 57, 12855—12858 |
国家自然科学基金(22279012)
/
| 〈 |
|
〉 |