超疏水煤矸石光热涂层的制备及防覆冰性能
张卓昱 , 吴君 , 张佳欣 , 赵世豪 , 崔敏祺 , 宋浩杰 , 李永
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (09) : 141 -149.
超疏水煤矸石光热涂层的制备及防覆冰性能
Preparation of Superhydrophobic Coal Gangue Photothermal Coating and Its Anti-icing Performance
通过十二胺(DDA)与多巴胺(DA)的迈克尔加成反应原位修饰煤矸石, 制备了超疏水煤矸石光热涂层.该涂层具有优异的防冰和除冰性能, 为煤矸石废弃物的改性和资源化利用提供了新方案. 结果表明, 煤矸石与聚多巴胺的光热协同效应使得涂层表面温度能够达到90.2 ℃(太阳光照强度为1.0 kW/m2). 同时, 由于多级结构和低表面能烷基长链的协同作用, 涂层表面的水接触角高达(157±0.8)°, 滚动角低至(3.2±0.3)°. 在-15 ℃的低温环境中, 涂层表面水滴冻结延迟时间是无涂层材料的38.3倍. 此外, 由于涂层具有光热转换特性, 涂层表面的覆冰在1.0 kW/m2的太阳光照强度下仅需80 s即可快速融化, 证明其具有优异的被动防冰和主动除冰特性. 重要的是, 涂层还具有优异的自清洁性能、 机械稳定性和化学稳定性. 该多功能光热涂层在煤矸石高值化利用和工程材料绿色防护方面具有重要应用前景.
A superhydrophobic coal gangue photothermal coating was prepared by in-situ modification of coal gangue through the Michael addition reaction of dodecylamine(DDA) and dopamine(DA). This coating has excellent anti- icing and de-icing properties, providing a new solution for the modification and resource utilization of coal gangue waste. The results show that the photothermal synergistic effect of coal gangue and polydopamine enable the surface temperature of the coating to reach 90.2 ℃(1.0 kW/m2). At the same time, due to the synergistic effect of the multi-scale structure and low surface energy alkyl long-chain, the coating surface exhibits a water contact angle up to (157±0.8)° and a sliding angle of (3.2±0.3)°. In a low-temperature environment of -15 ℃, the freezing delay time of water droplets on the coating surface is 38.3 times that of uncoated material. In addition, due to the photothermal conversion characteristics of the coating, the ice on the surface of the coating can quickly melt in just 80 s under 1.0 kW/m2 of light illumination, demonstrating its excellent passive anti-icing and active de-icing performance. Importantly, the coating also has excellent self-cleaning performance, mechanical stability, and chemical stability. This multifunctional photothermal coating has important application prospects in the high-value utilization of coal gangue and green protection of engineering materials.
Coal gangue modification / Photothermal conversion / Superhydrophobic coating / Anti-icing
| [1] |
Guo F. Q., Liu K. L., Yu Q., Yang Q. L., Su P., Coal Process. Compr. Util., 2023, (8), 89—93, 8 |
| [2] |
郭富强, 刘昆仑, 俞乔, 杨秦礼, 苏蓬. 煤炭加工与综合利用, 2023, (8), 89—93, 8 |
| [3] |
Zhang H. L., Teng Z. D., Jiang X. L., Yang Y. M., Li T. G., Environ. Chem., 2024, 43(6), 1778—1791 |
| [4] |
张华林, 滕泽栋, 江晓亮, 杨幼明, 李庭刚. 环境化学, 2024, 43(6), 1778——1791 |
| [5] |
Li H., Yang C. M., J. Nat. Sci. Hunan Norm. Univ., 2024, 47(1), 1—9 |
| [6] |
李欢, 杨春明. 湖南师范大学自然科学学报, 2024, 47(1), 1—9 |
| [7] |
Song W. Z., Li H., Zhang Y., He D., Li Y. Z., Huang Z. Z., Liu X., Yin W. Z., Chem. J. Chinese Universities, 2018, 39(12), 2644—2650 |
| [8] |
宋文植, 李慧, 张艳, 何丹, 李英姿, 黄臻臻, 刘新, 尹万忠. 高等学校化学学报, 2018, 39(12), 2644—2650 |
| [9] |
Wu J., Yang X. Y., Jia X. H., Yang J., Miao X., Shao D., Song H. J., Li Y., Chem. Eng. J., 2023, 471, 144684 |
| [10] |
Jiang H., Gu H. H., Liang F., He G. J., Tian Y., Chem. J. Chinese Universities, 2024, 45(12), 20240403 |
| [11] |
姜杭, 谷昊辉, 梁峰, 何冈骏, 田宇. 高等学校化学学报, 2024, 45(12), 20240403 |
| [12] |
Chai Z. C., Fang. M. H., Min. X., Nano Energy, 2024, 124, 109437 |
| [13] |
Guo Y., Zhao H. B., Zhang. C. S., Zhao G. Q., Chem. Eng. J., 2024, 497, 154383 |
| [14] |
Zhang F., Yan H. J., Chen M. J., Small, 2024, 20(32), 2312226 |
| [15] |
Zhang H. L., Zhao M. F., Jiang X. L., Tian S. J., Teng Z. D., Li T. G., Acta Chimica Sinica, 2024, 82(5), 527—540 |
| [16] |
张华林, 赵梦飞, 江晓亮, 田少静, 滕泽栋, 李庭刚. 化学学报, 2024, 82(5), 527—540 |
| [17] |
Peng L. G., He Y. G., Zhang L. Q., Cheng H. Q., Ding Z. Y., Zhang J. K., Appl. Chem. Ind., 2023, 52(7), 2184—2187 |
| [18] |
彭龙贵, 何毓刚, 张亮青, 程焕全, 丁治玉, 张金魁. 应用化工, 2023, 52(7), 2184—2187 |
| [19] |
Zhang C. S., Deng Y. X., Wu Q. S., J Environ. Eng., 2013, 7(8), 3170—3174 |
| [20] |
张长森, 邓育新, 吴其胜. 环境工程学报, 2013, 7(8), 3170—3174 |
| [21] |
Yang C. Y., Liu L. J., Shang Z. B., Li D. L., Zhong R. F., Chang Z. X., J. Chem. Res., 2020, 31(5), 400—404 |
| [22] |
杨长钰, 刘兰靖, 尚中博, 李德亮, 种瑞峰, 常志显. 化学研究, 2020, 31(5), 400—404 |
| [23] |
Zhang L. M., Zhang K. Q., Yang Q. Y., Tang S. M., West China Commun. Sci. Technol., 2020, (5), 19—24 |
| [24] |
张立明, 张坤球, 姚青云, 唐双美. 西部交通科技, 2020, (5), 19—24 |
| [25] |
Li Y., Yan S. W., Jia X. H., Wu J., Yang J., Zhao C. X., Wang S. Z., Song H. J., Yang X. F., Appl. Catal. B Environ, 2021, 287, 119926 |
| [26] |
Li Y., Li H., Wu J., Jia X. H., Zhang Z. Y., Yang J., Miao X., Feng L., Song H. J., ACS Sustainable Chem. Eng., 2023, 11, 10566—10577 |
| [27] |
Cheng S. J., Latthe S. S., Nakata K., Xing R. M., Liu S. H., Fujishima A., Mater. Today Chem., 2024, 35, 101868 |
| [28] |
Li Y., Li H., Wu J., Yang X. Y., Jia X. H., Yang J., Shao D., Feng L., Wang S. Z., Song H. J., Appl. Surf. Sci., 2022, 600, 154177 |
| [29] |
Li R., Li Y., Jia X. H., Yang J., Miao X., Shao D., Feng L., Wang S. Z., Wu J., Song H. J., Ceram. Int., 2023, 49, 14635—14644 |
| [30] |
Xuan S. S., Yin H., Li G. Q., Zhang Z. X., Jiao Y., Li J. H., Liu S. Y., Wang Y., Tang C. N., Wu W. M., Li G. L., Yin K., ACS Nano, 2023, 17(21), 21749—21760 |
| [31] |
Fu P. A., Ou J. F., He Y. J., Hu Y. T., Wang F. J., Fang X. Z., Li W., Amirfazli A, Surf. Interfaces, 2024, 45, 103890 |
| [32] |
Hao S. S., Zhan Y. L., Li W., Zhao W. X., Amirfazli A., Adv. Eng. Mater., 2024, 26(7), 2301948 |
| [33] |
Huang X. C., Sun M., Shi X., Shao J. L., Jin M. H., Liu W. N., Zhang R. H., Huang S. W., Ye Y. M., Chem. Eng. J., 2023, 454, 139981 |
| [34] |
Liu Z. Y., Hu J. H., Jiang G., Surf. Coat. Tech., 2022, 444, 128668 |
| [35] |
Wu L. S., Liu P., Hua X. C., Guo Z. G., Liu W. M., Chem. Eng. J., 2024, 480, 147553 |
| [36] |
Yuan Y., Zhang C. Z., Jiang B. C., Lei Y. H., Li Z. T., Sun K., Zhang Y. L., Prog. Org. Coat., 2024, 196, 108725 |
| [37] |
Zhou X. D., Zhai Z. Q., Wang J. S., Wang T., Zheng H. Y., Wu Y. L., Yan C. Y., Liu M. M., ACS Appl. Polym. Mater., 2024, 6(12), 7137—7147 |
国家自然科学基金(52303376)
四川省全电通航飞行器关键技术工程研究中心开放课题(CAFUC2025KF07)
国家级大学生创新训练计划项目(202410708053)
/
| 〈 |
|
〉 |