稀土掺杂Bi2-x Gd x MoO6的合成及近红外反射性能
闫峻琳 , 李晓东 , 刘东洋 , 李明哲 , 张粟
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (09) : 38 -49.
稀土掺杂Bi2-x Gd x MoO6的合成及近红外反射性能
Synthesis and Near-infrared Reflective Properties of Rare-earth-doped Bi2-x Gd x MoO6
面对全球气候变化与城市热岛效应日益加剧的挑战, 开发兼具高近红外反射性能与热调控能力的节能功能材料已成为研究热点. 传统氧化物材料如Bi2MoO6在近红外波段的反射性能仍存在一定局限. 近年来, 稀土改性钼酸盐材料因其优异的光学响应特性及结构稳定性, 在近红外反射材料领域得以广泛关注. 本文采用固相合成法制备了Gd3+掺杂的近红外反射材料Bi2-x Gd x MoO6(x=0, 0.2, 0.4, 0.6, 0.8, 1.0); 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 能谱分析(EDS)、 傅里叶变换红外光谱(FTIR)、 拉曼光谱(Raman)、 近红外(NIR)反射测试、 热重-差热分析(TG-DSC)及隔热性能实验对样品进行了表征. 结果表明, 合成的样品具有良好的结晶度. Gd3+掺杂引起带隙收缩(2.87 eV至2.80 eV), 导致吸收边红移, 增强了样品对450~600 nm蓝绿光的吸收, 使其呈现更明显的黄色调, 从而实现了色彩调控. Bi2-x Gd x MoO6系列样品皆表现出较高的近红外反射率, 均高于87.68%, 显著高于TiO2(75.66%). 尤其是x=0.4时, 样品的近红外反射率达到90.11%, 近红外太阳反射率为89.53%, 分别比TiO2高出14.45%和9.24%. 红外线灯照射实验进一步验证了其优异的节能隔热性能. TG-DSC分析表明, Bi2-x Gd x MoO6材料具有优异的热稳定性, 可在高温环境下长期使用, 为高效隔热材料提供了新的选择.
In response to the escalating challenges of global climate change and urban heat island effects, the development of energy-efficient functional materials with high near-infrared(NIR) reflectance and effective thermal regulation capabilities has become a research focus. Traditional oxide materials, such as Bi2MoO6, still exhibit certain limitations in NIR reflectance. In recent years, rare-earth-modified molybdate materials have attracted significant attention in the field of NIR-reflective coatings due to their excellent optical response characteristics and structural stability. In this study, Gd3+-doped Bi2-x Gd x MoO6(x=0, 0.2, 0.4, 0.6, 0.8, 1.0) NIR reflective materials were synthesized via a solid-state reaction method. The obtained samples were systematically characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), Fourier transform infrared spectroscopy(FTIR), Raman spectroscopy, near-infrared(NIR) reflectance spectroscopy, thermogravimetric-differential scanning calorimetry(TG-DSC) and thermal insulation performance tests. The results indicated that the synthesized samples exhibited good crystallinity. Gd3+ doping induced a bandgap narrowing (from 2.87 eV to 2.80 eV), leading to a redshift of the absorption edge and enhanced absorption in the 450—600 nm blue-green region, resulting in a more pronounced yellow hue and enabling effective color modulation. All Bi2-x Gd x MoO6 samples exhibited high NIR reflectance, with values exceeding 87.68%, significantly higher than that of TiO2(75.66%). In particular, the sample with x=0.4 demonstrated the highest NIR reflectance of 90.11% and a NIR solar reflectance of 89.53%, which are 14.45% and 9.24% higher than those of TiO2, respectively. Infrared lamp irradiation experiments further confirmed the superior energy-saving and thermal insulation performance of the materials. TG-DSC analysis revealed that Bi2-x Gd x MoO6 pigments possess excellent thermal stability, allowing for long-term application in high-temperature environments. These findings offer a new and promising alternative for high-performance thermal insulation materials.
Rare earth / Bi2MoO6 / Near-infrared reflectance property / Gd3+
| [1] |
Deilami K., Kamruzzaman M., Liu Y., Int. J. Appl. Earth Obs. Geoinf., 2018, 67, 30—42 |
| [2] |
Carlosena L., Ruiz⁃Pardo Á., Feng J., Irulegi O., Hernández⁃Minguillón R. J., Santamouris M., Sol. Energy, 2020, 208, 430—444 |
| [3] |
Ta L., Wang L. L., Gao H., Adv. Mater. Res., 2014, 926, 4369—4372 |
| [4] |
Ali A. A., El Fadaly E., Ahmed I. S., Dyes Pigm., 2018, 158, 451—462 |
| [5] |
Wang Q. Y., Wang Z. W., Qi M. H., Zhao H., Xin X., Verma A., Siritanon T., Ramirez A. P., Subramanian M.A., Jiang P., ACS Sustain. Chem. Eng., 2024, 12(14), 5522—5532 |
| [6] |
Su Y. J., Chen C., Wang J. Y., Han A. J., Ye M. Q., Ceram. Int., 2024, 50(11), 18169—18176 |
| [7] |
Xie P. Y., Wang H., Appl. Therm. Eng., 2021, 191, 116883 |
| [8] |
Fedel M., Rosati A., Rossi S., Picollo M., Parrino F., Ceram. Int., 2024, 50(9), 15952—15964 |
| [9] |
Lv K., Liang X., Zhang L. M., Zhang Z. T., Gao Y. F., Ceram. Int., 2024, 50(10), 16901—16908 |
| [10] |
Ianoș R., Rus I., Lazău R., Ciutan R., Appl. Mater. Today, 2024, 39, 102301 |
| [11] |
Thongkanluang T., Kittiauchawal T., Limsuwan P., Ceram. Int., 2011, 37(2), 543—548 |
| [12] |
Zheng N. X., Lei J. A., Wang S. B., Li Z. F., Chen X. B., Coatings, 2020, 10(11), 1065 |
| [13] |
Chen Y. Z., Li Z. X., Ding S. Q., Yang X. L., Guo T. T., Int. J. Pavement Eng., 2022, 23(13), 4455—4464 |
| [14] |
Chen Y. J., Sha A. M., Jiang W., Lu Q., Du P. D., Hu K., Li C., Constr. Build. Mater., 2025, 470, 140645 |
| [15] |
Cai C., Wu Y., Sun K. Z., Fang Q. L., Li P. Z., Cui S., Zhang Y., Chem. Eng. J., 2025, 511, 162195 |
| [16] |
Ding C., Tian M. M., Han A. J., Ye M. Q., Chen X., Sol. Energy, 2020, 195, 660—669 |
| [17] |
Feng L., Li L. Q., Zhang M. Q., Yang Y. J., Sun X. Q., Ceram. Int., 2022, 48(20), 30630—30639 |
| [18] |
Minagawa K., Nishiguchi Y., Oka R., Masui T., ACS Omega., 2021, 6(4), 3411—3417 |
| [19] |
Xiao Y., Huang B., Chen J. Q., Sun X. Q., J. Alloys Compd., 2018, 762, 873—880 |
| [20] |
Zhu H., Bai M. M., Guo W. Y., Li W. X., China Ceramics, 2025, 61(1), 50—57, 64 |
| [21] |
朱海, 白明敏, 郭文渊, 李伟信. 中国陶瓷, 2025, 61(1), 50—57, 64 |
| [22] |
Reid M. F., Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Amsterdam, 2016, 50, 47—64 |
| [23] |
Zhao S., Huo Z. P., Zhong G. Q., Zhang H., Hu L. Q., Chem. J. Chinese Universities, 2022, 43(6), 20220039 |
| [24] |
赵盛, 霍志鹏, 钟国强, 张宏, 胡立群. 高等学校化学学报, 2022, 43(6), 20220039 |
| [25] |
Moriomoto T., Oka R., Minagawa K, Masui T., RSC Adv., 2022, 12(26), 16570—16575 |
| [26] |
Zhang X. R., Wen Y. Q., Lu F., Hao X. K., Zhang C. X., Liu J. R., Qi Y. Q., Li X. F., Li L., Zhang G. R.. Chinese Rare Earths, 2023, 44(4), 108—124 |
| [27] |
张秀荣, 温永清, 鲁飞, 郝先库, 张呈祥, 刘金荣, 祁雅琼, 李雪菲, 李璐, 张光睿. 稀土, 2023, 44(4), 108—124 |
| [28] |
Li Y. J., Cao T. P., Mei Z. M., Xi X. T., Wang X., Chem. J. Chinese Universities, 2017, 38(12), 2313—2319 |
| [29] |
李跃军, 曹铁平, 梅泽民, 席啸天, 王霞. 高等学校化学学报, 2017, 38(12), 2313—2319 |
| [30] |
Jia X. X., Xu M. J., Ai L. L., Guo N. N., Wang L. X., Journal of Xinjiang University(Natural Science Edition in Chinese and English), 2023, 40(5), 600—609 |
| [31] |
贾欣欣, 徐梦姣, 艾礼莉, 郭楠楠, 王鲁香, 新疆大学学报(自然科学版)(中英文), 2023, 40(5), 600—609 |
| [32] |
Wu X. L., Bi2MoO6⁃Based Semiconductor for Photocatalytic Water Oxidation: Strategies for Improving the Performance, the University of New South Wales, Sydney, 2018 |
| [33] |
Liu S., Zhang S., Li X. D., Wang S., Li C. Y., Ceram. Int., 2023, 49(3) 5456—5465 |
| [34] |
Wei J. W., Cai C., Xu S. Q., Zhang Y., Ceram. Int., 2024, 50(4), 6606—6614 |
| [35] |
Wei X. L., Zou X. Y., Deng Z. F., Bao W. W., Ai T. T., Zhang Q., Front. Mater., 2022, 9, 850115 |
| [36] |
Uemoto K. L., Sato N. M. N., John V. M., Energy Buildings, 2010, 42(1), 17—22 |
| [37] |
Fairey P. W., Florida Solar Energy Center, University of Florida, Gainesville, 1986 |
| [38] |
Han Y. Y., Wang L. Y., Wang D., Liang D. Y., Wang S. Q., Lu G. X., Di Z. Y., Jia G., J. Alloys Compd., 2017, 695, 3018—3023 |
| [39] |
Kunzel R., Umisedo N. K., Okuno E., Yoshimura E. M., Marques A. P. D., Ceram. Int., 2020, 46(10), 15018—15026 |
| [40] |
Jayaraman A., Wang S. Y., Shieh S. R., Sharma S. K., Ming L. C., J. Raman Spectrosc., 1995, 26(6), 451—455 |
| [41] |
Phuruangrat A., Putdum S., Dumrongrojthanath P., Thongtem S., Thongtem T., J. Nanomater., 2015, 2015, 135735 |
| [42] |
Liu S., Zhang S., Li X. D., Wang S., Han M., Li C. Y., Opt. Mater., 2022, 133, 112921 |
| [43] |
Deng J. G., Zhang L., Dai H. X., He H., Au C. T., J. Mol. Catal. A: Chem., 2009, 299(1/2), 60—67 |
| [44] |
Liu Y. P., Yang J. X., Hao Y. M., Qu S. N., Chem. J. Chinese Universities, 2025, 46(6), 20240070 |
| [45] |
刘钰鹏, 杨钧翔, 郝一鸣, 曲松楠. 高等学校化学学报, 2025, 46(6), 20240070 |
| [46] |
Mansour S. A., Farha A. H., Crystals, 2025, 15(3), 271 |
| [47] |
Tauc J., Grigorovici R., Vancu A., Phys. Status Solidi A, 1966, 15(2), 627—637 |
| [48] |
Xu S. Q., Zhang J., Zhang Y., Zhu W., Wang A. P., Zhuang S. X., Ceram. Int., 2022, 48(10), 14406—14413 |
| [49] |
Thara T. R. A., Rao P. P., Raj A. K. V., Sreena T. S., Sol. Energy Mater. Sol. Cells, 2019, 200, 110015 |
| [50] |
Meenakshr P., Selvaraj M., Sol. Energy Mater. Sol. Cells, 2018, 174, 530—537 |
| [51] |
Chen C. L., Han A. J., Ye M. Q., Wang J. Y., Chen X., J. Alloys Compd., 2021, 886, 161257 |
| [52] |
Cao H. W., Tang Q. F., Qu B., Huo H., Zheng Q. L., Cao Y. L., Li J. Z., Chem. J. Chinese Universities, 2024, 45(2), 20230398 |
| [53] |
曹华文, 唐秋凡, 屈蓓, 霍欢, 郑启龙, 曹意林, 李吉祯. 高等学校化学学报, 2024, 45(2), 20230398 |
吉林省科技发展计划项目(20230101051JC)
/
| 〈 |
|
〉 |