氮掺杂多孔碳化钼纳米棒的制备及在酸碱条件下的析氢性能
王乙童 , 曹圆圆 , 周丽娜 , 叶荣榕 , 李娣 , 刘芯辛 , 郭彪 , 周丽景 , 赵震
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (08) : 73 -83.
氮掺杂多孔碳化钼纳米棒的制备及在酸碱条件下的析氢性能
Synthesis of Nitrogen-doped Porous Molybdenum Carbide Nanorods and Their Electrocatalytic Hydrogen Evolution Performance in Acidic and Alkaline Media
电解水制氢技术凭借资源可再生性、 产物零碳排放及高纯度氢气产出等优势, 被视为绿氢规模化生产的理想途径. 作为电解水反应的核心半反应, 析氢反应(HER)的动力学迟缓特性制约了其能量转换效率. 因此, 开发兼具高活性与稳定性的析氢电催化剂是推动该技术实用化的关键挑战. 本文通过调控碳化温度与葡萄糖含量等关键合成参数, 制备了具有多孔结构的氮掺杂碳化钼纳米棒催化剂. 采用X射线衍射(XRD)、 X射线光电子能谱(XPS)、 氮气吸附-脱附实验、 拉曼光谱(Raman)、 扫描电子显微镜(SEM)和透射电子显微镜(TEM)等表征手段, 揭示了产物的物相组成、 化学态分布及微观形貌特征. 电化学性能测试结果表明, 在0.5 mol/L H2SO4与1 mol/L KOH中, 该催化剂达到10 mA/cm2电流密度时过电势分别为161和118 mV; 在酸性条件下可于10 mA/cm2恒电流密度下连续稳定运行200 h, 而在碱性条件下同样电流密度的稳定性测试时长可达120 h.
Water electrolysis for hydrogen production has been recognized as an ideal pathway toward scalable green hydrogen manufacturing, owing to its renewable feedstock utilization, zero carbon emission byproducts, and high-purity hydrogen output. As the pivotal half-reaction in water splitting, the hydrogen evolution reaction(HER) suffers from sluggish kinetics that fundamentally limits energy conversion efficiency. Consequently, developing HER electrocatalysts with combined high activity and operational stability remains a critical challenge for practical implementation. In this work, nitrogen-doped molybdenum carbide nanorods with hierarchical porous structures were synthesized by precisely regulating key synthesis parameters, including carbonization temperature and glucose content. Their phase composition, chemical state distribution, and morphological features were characterized via X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), nitrogen adsorption-desorption, Raman spectroscopy, scanning electron microscope(SEM), and transmission electron microscope(TEM). Electrochemical evaluations demonstrated that the optimized catalyst requires low overpotentials of merely 161 and 118 mV to achieve a current density of 10 mA/cm2 in 0.5 mol/L H2SO4 and 1 mol/L KOH, respectively. Remarkably, it exhibits exceptional operational stability, sustaining continuous HER operation for 200 h at 10 mA/cm2 in acidic media and 120 h under identical current density in alkaline condition.
Molybdenum carbide / Nanorods / Water splitting / Hydrogen evolution reaction
支持信息见http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20250095.
| [1] |
Lubitz W., Tumas W., Chem. Rev., 2007, 107(10), 3900—3903 |
| [2] |
Dawood F., Anda M., Shafiullah G. M., Int. J. Hydrog. Energy, 2020, 45(7), 3847—3869 |
| [3] |
Guan D., Wang B., Zhang J., Shi R., Jiao K., Li L., Yang W., Biao X., Zhang Q., Yu J., Zhu Y., Shao Z., Ni M., Energy Environ. Sci., 2023, 16(11), 4926—4943 |
| [4] |
Sadeq A. M., Homod R. Z., Hussein A. K., Togun H., Mahmoodi A., Isleem H. F., Patil A. R., Moghaddam A. H., Sci. Total Environ., 2024, 939, 173622—173649 |
| [5] |
Du Y., Zheng X., Xue Y., Li Y., Chem. Res. Chinese Universities, 2022, 38(6), 1380—1386 |
| [6] |
Chatenet M., Pollet B. G., Dekel D. R., Dionigi F., Deseure J., Millet P., Braatz R. D., Bazant M. Z., Eikerling M., Staffell I., Balcombe P., Shao-Horn Y., Schäfer H., Chem. Soc. Rev., 2022, 51(11), 4583—4762 |
| [7] |
Lv X. W., Tian W. W., Yuan Z. Y., Electrochem. Energy Rev., 2023, 6(1), 23—60 |
| [8] |
You B., Sun Y., Acc. Chem. Res., 2018, 51(7), 1571—1580 |
| [9] |
Gao Y., Xue Y., Wu H., Chen S., Zheng X., Xing C., Li Y., J. Am. Chem. Soc., 2024, 146(15), 10573—10580 |
| [10] |
Qi L., Gao Y., Gao Y., Zheng Z., Luan X., Zhao S., Chen Z., Liu H., Xue Y., Li Y., J. Am. Chem. Soc., 2024, 146(8), 5669—5677 |
| [11] |
Shi X., Gu W., Zhang B., Zhao Y., Zhang A., Xiao W., Wei S., Pang H., Adv. Funct. Mater., 2025, 35, 2423760—2423785 |
| [12] |
Zhu J., Hu L., Zhao P., Lee L. Y. S., Wong K. Y., Chem. Rev., 2019, 120(2), 851—918 |
| [13] |
Zou X., Zhang Y., Che. Soc. Rev., 2015, 44(15), 5148—5180 |
| [14] |
Jamesh M. I., Hu D., Wang J., Naz F., Feng J., Yu L., Cai Z., Carlos C. J., Lee D. J., Chu P. K., Hsu H. Y., J. Mater. Chem. A, 2024 , 12,11771—11820 |
| [15] |
Yang M. Q., Wang J., Wu H., Ho G. W., Small, 2018, 14(15), 1703323—1703346 |
| [16] |
Cao Y. Y., Ye R. R., Li D., Wang X. Q., Liu X. X., Zhou L. J., Zhao Z., Sci. Sin. Chim, 2025, 55(2), 472—494 |
| [17] |
曹圆圆, 叶荣榕, 李娣, 王新琪, 刘芯辛, 周丽景, 赵震. 中国科学: 化学, 2025, 55(2), 472—494 |
| [18] |
Ge R., Huo J., Sun M., Zhu M., Li Y., Chou S., Li W., Small, 2021, 17(9), 1903380—1903404 |
| [19] |
Tong Y., Zhang Z., Hou Y., Yan L., Chen X., Zhang H., Wang X., Li Y., Nanoscale, 2023, 15(36), 14717—14736 |
| [20] |
Loh J. Y., Foo J. J., Yap F. M., Liang H., Ong W. J., Chinese J. Catal., 2024, 58, 37—85 |
| [21] |
Zhang L., Zhao H., Xu S., Liu Q., Li T., Luo Y., Gao S., Shi X., Asiri A. M., Sun X., Small Struct., 2021, 2(2), 2000048—2000071 |
| [22] |
Zhai S., Feng Y., Yuan Z. Y., Int. J. Hydrog. Energy, 2023, 48(89), 34677—34699 |
| [23] |
Ge R., Huo J., Sun M., Zhu M., Li Y., Chou S., Li W., Small, 2021, 17(9), 1903380—1903404 |
| [24] |
Han N., Yang K. R., Lu Z., Li Y., Xu W., Gao T., Cai Z., Zhang Y., Batista V. S., Liu W., Sun X., Nat. Commun., 2018, 9(1), 924—933 |
| [25] |
Zheng Y., Mou Y., Wang Y., Wan J., Yao G., Feng C., Sun Y., Dai L., Zhang H., Wang Y., J. Colloid Interface Sci., 2024, 656, 367—375 |
| [26] |
Chen J., Chen C., Chen Y., Wang H., Mao S., Wang Y., J. Catal., 2020, 392, 313—321 |
| [27] |
Diao J., Li X., Wang S., Zhao Z., Wang W., Chen K., Chen X., Chao T., Yang Y., J. Mater. Chem. A, 2021, 9(37), 21440—21447 |
| [28] |
Yuan S., Liu Y., Zheng J., Cui M., Wang K., Li N., J. Alloys Compd., 2023, 933, 167664—167671 |
| [29] |
Hu Z., Chen J., Pan P., Liu C., Zeng J., Ou Y., Qi X., Liang T., Int. J. Hydrog. Energy, 2022, 47(7), 4641—4652 |
| [30] |
Ma F. X., Wu H. B., Xia B. Y., Xu C. Y., Lou X. W., Angew. Chem., 2015, 54(51), 15395—15399 |
| [31] |
Chithambararaj A., Sanjini N. S., Bose A. C., Velmathi S. J. C. S., Catal. Sci. Technol., 2013, 3(5), 1405—1414 |
| [32] |
Song J., Ni X., Gao L., Zheng H., Mater. Chem. Phys., 2007, 102(2/3), 245—248 |
| [33] |
Kazuo N., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th edition, Wiley: New York, 2009 |
| [34] |
Plyuto Y. V., Babich I. V., Plyuto I. V., Van Langeveld A. D., Moulijn J. A., Appl. Surf. Sci., 1997, 119, 11—18 |
| [35] |
Chang J., Xiao Y., Xiao M., Ge J., Liu C., Xing W., ACS Catal., 2015, 5(11), 6874—6878 |
| [36] |
Kumar V., Wang X., Lee P. S., Nanoscale, 2015, 7(27), 11777—11786 |
| [37] |
Wang J., Li S., Hu J., Niu S., Li Y., Xu P., Inorg. Chem. Front., 2020, 7(19), 3620—3626 |
| [38] |
Jiang J., Liu Q., Zeng C., Ai L., J. Mater. Chem. A, 2017, 5(32), 16929—16935 |
| [39] |
Huang J., Wang J., Xie R., Tian Z., Chai G., Zhang Y., Lai F., He G., Liu C., Liu T., Shearing P. R., Brett D. J., J. Mater. Chem. A, 2020, 8(38), 19879—19886 |
| [40] |
Jing Q., Zhu J., Wei X., Lin Y., Wang X., Wu Z., J. Colloid Interface Sci., 2021, 602, 520—533 |
/
| 〈 |
|
〉 |