电导调控的双极电极电化学发光法检测尿素
Detection of Urea by Conductivity-regulated Bipolar Electrochemiluminescence
构建一种基于溶液电导调控的双极电极电化学发光(BPE-ECL)传感平台, 用于尿素的定量检测. 在图案化的双极电极(BPE)上构建了独立的传感检测池与信号收集池, 采用钌联吡啶/三正丙胺作为电化学发光(ECL)试剂. 当传感池中存在不同浓度的尿素时, 脲酶可特异性催化分解尿素分子, 产生导电离子促使溶液电导增大, 基于BPE的电荷平衡机制, 信号池中ECL响应强度随之增强. 尿素浓度越高, ECL信号强度越大, 据此建立了基于电导调控的BPE-ECL平台用于尿素的检测. 在最优条件下, 该传感平台对尿素在10 nmol/L~1 mmol/L浓度范围内呈现良好的线性关系, 检出限为0.19 nmol/L(S/N=3). 将该传感平台用于人尿液样品的加标回收 实验, 表现出良好的准确性和抗干扰能力. 基于溶液电导调控的传感机制无需加入外源电活性指示剂, 且传感-信号分离的模式可有效避免复杂生物样本与信号反应交叉的干扰.
In this study, a bipolar electrochemiluminescence(BPE-ECL) sensing platform based on the regulation of conductivity was constructed for the detection of urea. An independent sensing cell and a reporting cell were built on the patterned BPE, and ruthenium bipyridine/tri-n-propylamine was used as the source of ECL. When urea at different concentrations is present in the sensing cell, urease specifically catalyzes the decomposition of urea, generating ions that promote an increase in the conductivity. Based on the charge balance of BPE, the ECL intensity from the reporting cell increases. Meanwhile, the ECL intensities increase following the enhancement of urea concentrations. Therefore, a BPE-ECL platform based on the regulation of conductivity was established for the detection of urea. Under optimal conditions, this sensing platform exhibits a good linear relationship for urea in the range of 10 nmol/L to 1 mmol/L, and the limit of detection is 0.19 nmol/L(S/N=3). The sensing platform was further applied to spiked recovery detection in human urine samples, showing good accuracy and anti-interference ability. This sensing strategy not only eliminates the need for exogenous electroactive indicators, but also effectively avoids the interference of complex biological samples with the signal reaction through the sensing-signal separation of BPE.
双极电极 / 电化学发光 / 电导调控 / 传感-信号分离 / 尿素
Bipolar electrode(BPE) / Electrochemiluminescence(ECL) / Conductivity regulation / Sensing-signal separation / Urea
| [1] |
Hu B., Kang X. H., Xu S. H., Zhu J. W., Yang L., Jiang C. L., Anal. Chem., 2023, 95(7), 3587—3595 |
| [2] |
Pundir C. S., Jakhar S., Narwal V. Biosens. Bioelectron., 2019, 123, 36—50 |
| [3] |
Phonchai A., Rattana S., Thongprajukaew K., Food Chem., 2020, 319, 126545 |
| [4] |
Servarayan K. L., Sundaram E., Velayutham K., Aravind M. K., Sundarapandi M., Ashokkumar B., Sivasamy V. V., Spectrochim. Acta Part A, 2024, 315, 124271 |
| [5] |
Guo L., Zhang H. F. Microchem. J., 2025, 209, 112897 |
| [6] |
Feng D. F., Xiao M. X., Yang P. H., Anal. Chem., 2023, 95(2), 766—773 |
| [7] |
Xu J. J., Yang W. Q., Ni J. C., Wang Q. X., Lin Z. Y., Sens. Actuators B, 2023, 397, 134694 |
| [8] |
Barhoum A., Altintas Z., Devi K. S. S., Forster R. J., Nano Today, 2023, 50, 101874 |
| [9] |
Liu X., Wang N. Y., Zhao W., Jiang H., Luminescence, 2015, 30(1), 98—101 |
| [10] |
Ismail N. S., Hoa L. Q., Huong V. T., Inoue Y., Yoshikawa H., Saito M., Tamiya E., Electroanalysis, 2017, 29(4), 938—943 |
| [11] |
Wang B. D., Pan M. C., Zhuo Y., Chem. J. Chinese Universities, 2021, 42(11), 3519—3525 |
| [12] |
王博东, 潘美辰, 卓颖. 高等学校化学学报, 2021, 42(11), 3519—3525 |
| [13] |
Rahn K. L., Anand R. K., Anal. Chem., 2021, 93(1), 103—123 |
| [14] |
Li H. K., Cai Q. Q., Li P. P., Jie G. F., Anal. Chem., 2024, 96(34), 13987—13995 |
| [15] |
Zhu L., Lv X., Yu H. H., Tan X. R., Rong Y. M., Feng W. H., Zhang L. N., Yu J. H., Zhang Y., Anal. Chem., 2022, 94(23), 8327—8334 |
| [16] |
Ni J. C., Yang B. F., Liu L. Y., Dai X. H., Yang W. Q., Wang Q. X., Chen X. P., Song Z. P., Lin Z. Y., Anal. Chem., 2024, 96(30), 12577—12583 |
| [17] |
Li H. K., Cai Q. Q., Wang J. R., Jie G. F., Biosens. Bioelectron., 2023, 232, 115315 |
| [18] |
Li M. J., Qi Y., Xu M. Y., Wang F. Y., Xiong X. H., Liu Y. J., Microchem. J., 2024, 207, 111788 |
| [19] |
Krishnan V., Tirkolaei H. K., Jr. E. K., ACS Omega, 2023, 8(15), 13791—13798 |
| [20] |
Li H. K., Cai Q. Q., Li Z. K., Jie G. F., Zhou H., Biosens. Bioelectron., 2024, 255, 116258 |
| [21] |
Zhang X. W., Zhai Q. F., Xu L., Li J., Wang E. K., J. Electroanal. Chem., 2016, 781, 15—19 |
| [22] |
Althagafi I. I., Ahmed S. A., El⁃Said W. A., PLoS One, 2019, 14(1), e0210652 |
| [23] |
Chiang H. C., Wang Y. Y., Zhang Q., Levon K., 2019, 9(2), 50 |
| [24] |
Velychko T. P., Soldatkin О. О., Melnyk V. G., Marchenko S. V., Kirdeciler S. K., Akata B., Soldatkin A. P., El’skaya A. V., Dzyadevych S. V., Nanoscale Research Letters, 2016, 11(1), 106 |
| [25] |
Miao W. J., Choi J. P., Bard A. J., J. Am. Chem. Soc., 2002, 124(48), 14478—14485 |
| [26] |
Deng H. H., Hong G. L., Lin F. L., Liu A. L., Xia X. H., Chen W., Anal. Chim. Acta, 2016, 915, 74—80 |
| [27] |
Chen M. M., Cheng S. B., Ji K. L., Gao J. W., Liu Y. L., Wen W., Zhang X. H., Wang S. F., Huang W. H., Chemical Science, 2019, 10(25), 6295—6303 |
/
| 〈 |
|
〉 |