构筑镧基耐蚀膜助力水系锌电池实现超长循环寿命
苟蕾 , 孙爱红 , 梁凯 , 王延静 , 樊小勇 , 李东林
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (10) : 127 -137.
构筑镧基耐蚀膜助力水系锌电池实现超长循环寿命
Construction of Lanthanide-based Corrosion-resistant Films for Aqueous Zinc Batteries with Ultra-long Cycle Life
在锌负极表面生长的镧基耐蚀膜(LaCRF)有效降低了锌离子的成核过电位, 显著抑制了锌枝晶、 基体腐蚀和副产物的生成. 电化学性能测试结果表明, 采用Zn@LaCRF改性的对称电池在电流密度为2 mA/cm2, 面容量为1 mA·h/cm2的条件下展现出超过3000 h的循环稳定性和较小的极化现象; 在Zn@LaCRF||Cu半电池中, 循环次数超过800次; Zn@LaCRF||MnO2全电池在1.8 A/g电流密度下经过2000次循环后, 容量保持率高达91.9%.
Herein, a lanthanum-based corrosion-resistant film(LaCRF) was grown on the surface of the zinc anode, which effectively reduced the nucleation overpotential of zinc ions and significantly inhibited the formation of zinc dendrites, substrate corrosion, and by-products. Electrochemical performance tests indicate that symmetric cells modified with LaCRF exhibit over 3000 h of cycling stability and minimal polarization at a current density of 2 mA/cm2-1 mA·h/cm2. Furthermore, in Zn@LaCRF||Cu half-cell, the cycle life exceeds 800 cycles; meanwhile, in Zn@LaCRF||MnO2 full cell, the capacity retention rate remains as high as 91.9% after 2000 cycles at a current density of 1.8 A/g. This achievement not only provides a new solution for addressing the corrosion issues of zinc anodes but also paves a new direction for the application of rare earth elements in rechargeable aqueous zinc batteries.
水系锌电池 / 锌负极 / 耐蚀膜 / 稀土元素 / 长循环性能
Aqueous zinc battery / Zinc anode / Corrosion resistant film / Rare earth element / Long cycling performance
支持信息见http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20250105.
| [1] |
Pu Y. J., Zhang Y. K., Zhan K. Y., Zeng X. G., Yang X. J., Zhang Y. H., Li X. M., Chem. Eng. J., 2024, 494, 153002 |
| [2] |
Li P. W., Luo S. H., Zhang L., Liu Q. Y., Wang Y. K., Lin Y. C., Xu C., Guo J., Cheali P., Xia X. N., J. Energy Chem., 2024, 89, 144—171 |
| [3] |
Guo K., Li Y., Luo D., Guo Y. S., Pan S. Q., Lin S. Y., Yu N., J. Alloy Compd., 2024, 1004, 175772 |
| [4] |
Yang J. J., Gu X. X., Xu C. X., Li J., Wen B. B., Si L. J., Shen W. F., Chen K., Zhang X. K., Liu Y. Q., Lin X. M., Wu Y. B., Yang H. C., CrystEngComm, 2024, 26(38), 5314—5323 |
| [5] |
Zhang H. Y., Ning F. H., Guo Y. M., Subhan S., Liu X. Y., Shi S. Q., Lu S. G., Xia Y. Y., Yi J., ACS Energy Lett., 2024, 9(10), 4761—4784 |
| [6] |
Wang C. H., Zhang D., Yue S., Jia S. F., Li H., Liu W. X., Li L., Chem. Rec., 2024, 24(12), e202400142 |
| [7] |
Ge X. M., Peng Z., Zhang Q. Q., Zhu J., Zhao N. N., Zhang Z. K., Meng W., Li B., Wang L., Tian H. J., Dai L., He Z. X., J. Mater. Sci. Technol., 2025, 219, 10—18 |
| [8] |
Hu X. M., He Z. Q., Zhao Q. W., Zhou J., Wang C. D., Huang S. Z., Zhou G., Xu B. G., Wang B., Chen L. B., Chen Y. J., Adv. Funct. Mater., 2024, 34(49), 2409247 |
| [9] |
Zhu X. Y., Pan L., Peng Z. Y., Li B., Zhang Z. K., Zhao N. N., Meng W., Dai L., Wang L., Zhu J., He Z. X., J. Colloid Interface Sci., 2025, 677(Pt A), 1029—1036 |
| [10] |
Deng L. F., Xie X. F., Song W. W., Pan A. Q., Cao G. Z., Liang S. Q., Fang G. Z., Chem. Eng. J., 2024, 488, 151104 |
| [11] |
Peng Z., Yan H., Zhang Q. Q., Liu S. D., Jun S. C., Poznyak S., Guo N., Li Y. H., Tian H. J., Dai L., Wang L., He Z. X., Nano Lett., 2024, 24(30), 9137—9146 |
| [12] |
Zhou X. Y., Ruan T. T., Xu J., Li C. H., Huang S. X., Zhou J. P., Lu S. L., Song R. S., Li R. H., RSC Adv., 2024, 14(32), 23023—23036 |
| [13] |
Zhao K., Zhao J. N., Yu M., Liu F. M., Dong Y., Wang S. W., Cheng F. Y., Chem. Res. Chinese Universities, 2024, 40(4), 722—729 |
| [14] |
Zhang W. G., Zhang C., Wang H. Z., Wang H. H., Chem. Res. Chinese Universities, 2023, 39(6), 1037—1043 |
| [15] |
Jiao Q. Y., Zhou T. P., Zhang N., Liu S. H., Huang Q. Y., Bi W. T., Chu W. S., Wu X. J., Zhu Y. C., Feng Y., Wu C. Z., Sci. China Mater., 2022, 65(7), 1771—1778 |
| [16] |
Chen M. J., Cui Y. M., Liu W. F., Shi Z. P., Dong H. Y., Yue H. Y., Cao Z. X., Lu Z. S., Yang S. T., Yin Y. H., Inorg. Chem. Front., 2024, 11(15), 4748—4756 |
| [17] |
Du Y. X., Li R. T., Wang T. T., Feng Z. Y., Dong H., Fan F. F., Deng D. Z., Zhu J., Liu Y. G., Dai L., Wang L., He Z. X., Chem. Eng. J., 2024, 486,150139 |
| [18] |
Wang H., Zhao Q., Wang Y., Lin J. L., Li W. M., Watanabe S., Wang X. B., Phys. Chem. Chem. Phys., 2024, 26(35), 23411—23418 |
| [19] |
Zhang S. H., Yang B., Kong G., Lu J. T., Int. J. Electrochem. Sci., 2018, 13(11), 10247—10258 |
| [20] |
Chen L., Chen C. G., Wang N. N., Wang J. M., Deng L., Rare Metal Mat. Eng., 2015, 44(2), 333—338 |
| [21] |
Kang J. G., Kim Y. I., Cho D. W., Sohn Y. K., Mater. Sci. Semicond. Process., 2015, 40, 737—743 |
| [22] |
Liu Y. F., Zhang X. T., Shaaban S. M., Li Z. C., Alshammari D. A., Xu X. Y., Tang Y., El⁃Bahy Z. M., Lu B. G., Liu Y. Y., Zhou J., Adv. Energy Mater., 2025, doi:10.1002/aenm.202500962 |
| [23] |
Deng C. B., Xie X. S., Han J. W., Lu B.G.,Liang S. Q., Zhou J., Adv. Funct. Mater., 2021, 31(51), 2103227 |
| [24] |
Kong G., Liu L. Y., Lu J. T., Che C. S., Zhong Z., J. Rare Earths., 2010, 28(3), 461—465 |
| [25] |
Montemor M. F., Simões A. M., Ferreira M. G. S., Prog. Org. Coat., 2002, 44(2), 111—120 |
| [26] |
Zhang S. H., Kong G., Lu J. T., Che C. S., Liu L. Y., Surf. Coat. Tech., 2014, 259, 654—659 |
| [27] |
Wu J. C., Shen X. C., Zhou H. T., Li X. W., Gao H. Q., Ge J. Y., Xu T., Zhou H. Y., Small, 2023, 20(17), 2308541 |
| [28] |
Li J., Zhao T. H., Shangguan E. B., Li Y., Li L. Q., Wang D., Wang M. Y., Chang Z. R., Li Q. M., Electrochim. Acta, 2017, 236, 180—189 |
| [29] |
Li P. X., Ren J. F., Li C. X., Li J. X., Zhang K., Wu T. T., Li B., Wang L., Chem. Eng. J., 2023, 451, 138769 |
| [30] |
Li Y. H., Wu P. F., Zhong W., Xie C. L., Xie Y. L., Zhang Q., Sun D., Tang Y. G., Wang H. Y., Energ. Environ. Sci., 2021, 14(10), 5563—5571 |
| [31] |
Zeng Y. X., Pei Z. H., Luan D. Y., Luo X. W. D., J. Am. Chem. Soc., 2023, 145(22), 12333—12341 |
| [32] |
Ma L., Schroeder M. A., Borodin O., Pollard T. P., Ding M. S., Wang C. S., Xu K., Nat. Energy, 2020, 5(10), 743—749 |
| [33] |
Ma G. Q., Di S. L., Wang Y. Y., Yuan W. T., Ji X. W., Qiu K. Y., Liu M. Y., Nie X. Y., Zhang N., Energy Storage Mater., 2023, 54, 276—283 |
| [34] |
Gan X. R., Tang J., Wang X. Y., Gong L., Zhitomirsky I., Qie L., Shi K. Y., Energy Storage Mater., 2023, 59, 102769 |
| [35] |
Yu H. M., Chen D. P., Ni X. Y., Qing P., Yan C. S., Wei W. F., Ma J. M., Ji X. B., Chen Y. J., Chen L. B., Energy Environ. Sci., 2023, 16(6), 2684—2695 |
| [36] |
Zhang W. S., Zhu X. Y., Kang L., Peng Z. Y., Zhu J., Pan L., Dai L., Liu S. D., Wang L., Liu Y. G., He Z. X., J. Energy Chem., 2024, 90, 23—31 |
| [37] |
Chen J. J., Xiong J. M., Ye M. H., Wen Z. P., Zhang Y. F., Tang Y. C., Liu X. Q., Li C. C., Adv. Funct. Mater., 2024, 34(16), 2312564 |
| [38] |
Hu L. F., Han Y. Y., Yan L. J., Zhu C., Xu Z. X., Zou X. F., Zhou Y., Xiang B., Energy Storage Mater., 2024, 65, 103114 |
国家自然科学基金(22179011)
咸阳市秦创原科技创新专项(L2022-QCYZX-GY-005)
陕西省重点研发计划项目(2023-YBGY-445)
陕西省教育厅服务地方专项计划项目(22JE001)
长安大学中央高校基本科研业务费专项资金(300102315501)
/
| 〈 |
|
〉 |