氧化硅气凝胶负载铁酸钴活化过硫酸盐降解四环素的性能
谭烨 , 周志宏 , 吴优 , 童海霞 , 喻林萍 , 曾巨澜
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (09) : 104 -112.
氧化硅气凝胶负载铁酸钴活化过硫酸盐降解四环素的性能
Performance and Mechanism of CoFe₂O₄/Silica Aerogel in Activating Peroxymonosulfate for Tetracycline Degradation
为了解决目前过硫酸盐活化材料稳定性差、 重复使用性能欠佳的问题, 本文使用二氧化硅气凝胶固定CoFe2O4纳米颗粒, 合成了一种具有高比表面积的多孔CoFe2O4/二氧化硅气凝胶复合材料(SCF). 采用扫描电子显微镜、 透射电子显微镜、 X 射线衍射仪、 X 射线光电子能谱仪、 电子顺磁共振波谱仪、 傅里叶变换红外光谱仪和氮气吸附-脱附测试等手段对催化剂进行了表征. 结果表明, 二氧化硅气凝胶大大缓解了CoFe2O4纳米颗粒的团聚, CoFe2O4的负载在保留二氧化硅气凝胶高比表面积的同时, 丰富了复合材料的孔隙结构. 优化后的SCF在低负载(30%, 质量分数)下, 随着四环素(TC)浓度的上升, 体系中的PMS分子消耗速率提高, 降解效率逐渐降低. 当TC浓度为25 mg/L时,去除率达到92.6%; 当TC浓度50 mg/L时, 在30 min的去除率依然超过80%, 达到84.79%. 通过猝灭实验确定, 1O2和为催化反应中主要的活性物质, 并推测了可能的反应机理和降解途径. 复合材料还表现出优异的稳定性和pH耐受性.
In this work, a porous CoFe2O4/silica aerogel gel composite(SCF) with a high specific surface area was successfully synthesized by using silica aerogel as a CoFe2O4 carrier. The catalyst was systematically characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction analysis(XRD), X-ray photoelectron spectroscopy(XPS), electron paramagnetic resonance spectroscopy, Fourier transform infrared spectroscopy(FTIR), and nitrogen adsorption-desorption testing. The analysis shows that silica aerogel greatly alleviates the agglomeration of CoFe2O4 nanoparticles, and the successful loading of CoFe2O4 enriches the pore structure of the composite while retaining the high specific surface area of silica aerogel. The optimized SCF-30 achieved a removal efficiency of 84.79% for 50 mg/L TC solution after peroxymonosulfate(PMS) activation with low loading amount. Through quenching experiments, , 1O2, and were identified as the main active substances in the catalytic reaction, and possible reaction mechanisms and degradation pathways were speculated. In addition, composite materials exhibit excellent stability and pH tolerance. This work provides insights into the design and fabrication of highly stable persulfate-activating materials.
氧化硅气凝胶 / 铁氧体 / 四环素 / 过硫酸盐 / 高级氧化技术
Silica aerogel / Ferrite / Tetracycline / Peroxymonosulfate / Advanced oxidation process
| [1] |
Gaur N., Narasimhulu K., PydiSetty Y., J. Clean. Prod., 2018, 198, 1602—1631 |
| [2] |
Nadal M., Marquès M., Mari M., Domingo J. L., Environ. Res., 2015, 143, 177—185 |
| [3] |
Yang Y., Zhang X., Jiang J., Han J., Li W., Li X., Leung M. Y., Snyder S. A., Alvarez P. J. J., Environ. Sci. Technol., 2021, 56(1), 13—29 |
| [4] |
Akhtar A. B. T., Naseem S., Yasar A., Naseem Z., Environmental Pollution and Remediation, World Publishing Corporation, Beijing, 2021, 213—246 |
| [5] |
Mangla D., Sharma A., Ikram S., J. Hazard. Mater., 2022, 425, 127946 |
| [6] |
Zhang M., Dong H., Zhao L., Wang D. X., Meng D., Sci. Total Environ., 2019, 670, 110—121 |
| [7] |
Giannakis S., Lin K. Y. A., Ghanbari F., Chem. Eng. J., 2021, 406, 127083 |
| [8] |
Kohantorabi M., Moussavi G., Giannakis S., Chem. Eng. J., 2021, 411, 127957 |
| [9] |
Liu X., He S., Yang Y., Yao B., Tang Y. F., Luo L., Zhi D., Wan Z. H., Wang L., Zhou Y. Y., Environ. Res., 2021, 200, 111371 |
| [10] |
Zhu Y., Zhu R., Xi F., Zhu J. X., Zhu G. Q., He H. P., Appl. Catal. B: Environ., 2019, 255, 117739 |
| [11] |
Liu Y., Zhao Y., Wang J., J. Hazard. Mater., 2021, 404, 124191 |
| [12] |
Guan C., Jiang J., Pang S., Zhou Y., Gao Y., Li J., Wang Z., Water Res., 2020, 176, 115725 |
| [13] |
Peng X., Wu J., Zhao Z., Wang X., Dai H. L., Xu L., Xu G. P., Jian Y., Hu F. P., Chem. Eng. J., 2022, 427, 130803 |
| [14] |
Ding C., Xiao S., Lin Y., Yu P., Zhong M., Yang L. H., Wang H., Su L., Liao C. J., Zhou Y. Y., Deng Y. C., Gong D. X., Chem. Eng. J., 2019, 360, 104—114 |
| [15] |
Wu Z., Wang Y., Xiong Z., Ao Z. M., Pu S. Y., Yao G., Lai B., Appl. Catal. B: Environ., 2020, 277, 119136 |
| [16] |
Jiang H., Hu Z., Ouyang Y., Ji X. D., Hu X., Li T. T., Ouyang K., Wang P., Wang H., Hu X. J., Sep. Purif. Technol., 2023, 326, 124842 |
| [17] |
Tu J. W., Li Y., Chen L., Miao W., Int. J. Biol. Macromol., 2023, 253, 127347 |
| [18] |
Wang J., Lv H., Tong X., Ren W., Shen Y., Lu L., Zhang Y., J. Hazard. Mater., 2023, 459, 132334 |
| [19] |
Qi Y., Fan H., Chem. Res. Chinese Universities, 2024, 40, 776—785 |
| [20] |
Zhao S., Siqueira G., Drdova S., Norris D., Ubert C., Bonnin A., Galmarini S., Ganobjak M., Pan Z. Y., Brunner S., Nyström G., Wang J., Koebel M. M., Malfait W. J., Nature, 2020, 584(7821), 387—392 |
| [21] |
Görmez Ö., J. Mater. Sci., 2024, 59(27), 12793—12811 |
| [22] |
Jia C., Wu Y., Xu L., Han S. G., Gan L., Appl. Surf. Sci., 2023, 612, 155880 |
| [23] |
Fitriyanti E., Purnama B., J. Phys.: Conf. Ser., 2017, 909(1), 012010 |
| [24] |
Sun Z. M., Bai C. H., Zheng S. L., Yang X. P., Frost R. L., Appl. Catal. A: Gen., 2013, 458, 103—110 |
| [25] |
Yang Z., Li Y., Zhang X., Cui X. D., He S., Liang H., Ding A., Chem. Eng. J., 2020, 384, 123319 |
| [26] |
Cheng M. B., Ma Y. Q., Wang G. L., Hu P. Y., Wang J., Chem. Eng. J., 2024, 497, 154948 |
| [27] |
Sun Z. M., Yao G. Y., Xue Y. L., Sun W., Zheng S. L., Part. Sci. Technol., 2017, 35(4), 379—386 |
| [28] |
Deng J., Shao Y., Gao N., Tan C. Q., Zhou S. Q., Hu X. H., J. Hazard. Mater., 2013, 262, 836—844 |
| [29] |
Baldovino-Medrano V. G., Niño-Celis V., Isaacs G. R., J. Chem. Eng. Data, 2023, 68(9), 2512—2528 |
| [30] |
Aqeel T., Greer H. F., Crystals, 2020, 10(6), 549 |
| [31] |
Shi C. J., Fan Y. H., Zhang Z. Y., Deng X. Q., Yu J. X., Zhou H. X., Meng F. N., Feng J. Y., Appl. Surf. Sci., 2024, 652, 159293 |
| [32] |
Li J., Xu M., Yao G., Lai B., Chem. Eng. J., 2018, 348, 1012—1024 |
| [33] |
Bao Y., Lim T. T., Wang R., Webster R. D., Hu X., Chem. Eng. J., 2018, 343, 737—747 |
| [34] |
Li Y., Ma S., Xu S., Fu H. C., Li Z. Q., Li K., Sheng K., Du J. G., Lu X., Li X. H., Liu S. L., Chem. Eng. J., 2020, 387, 124094 |
| [35] |
Yang S., Qiu X., Xi P., Dzakpasu M., Wang X. C., Zhang Q. H., Zhang L., Yang L., Ding D. H., Wang W. D., Wu K., Chem. Eng. J., 2018, 353, 329—339 |
| [36] |
Liu M., Ma S., Zhao H., Lu H., Yang J., Tang S., Gao S. Y., Yang F., J. Alloys Compd., 2023, 949, 169901 |
| [37] |
Zhang M., Li Y., Yang B., Su Y. L., Xu J., Deng J. J., Zhou T. S., Sep. Purif. Technol., 2023, 306, 122566 |
| [38] |
Dong X. B., Ren B. X., Sun Z. M., Li C. Q., Zhang X. W., Kong M. H., Zheng S. L., Dionysiou D. D., Appl. Catal. B: Environ., 2019, 253, 206—217 |
| [39] |
Tan X., Liu S., Liu Y., Gu Y. L., Zeng G. M., Cai X. X., Yan Z. L., Yang C. P., Hu X. J., Chen B., Sci. Rep., 2016, 6(1), 39691 |
| [40] |
Yu H., Gu L., Chen L., Wen H. F., Zhang D. F., Tao H., Bioresour. Technol., 2020, 316, 123971 |
国家自然科学基金(22073011)
国家自然科学基金(52074039)
湖南省自然科学基金(2017JJ1026)
湖南省自然科学基金(2025JJ60114)
湖南省教育厅科研项目(24A0217)
/
| 〈 |
|
〉 |