Dy2O3/La2O3稀土复合氧化物催化发光传感1,2-环氧丙烷
张雨薇 , 杜一浩 , 张琰图 , 李云云
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (08) : 9 -16.
Dy2O3/La2O3稀土复合氧化物催化发光传感1,2-环氧丙烷
Cataluminescent Sensing of 1,2-Epoxypropane Using Dy₂O₃/La₂O₃ Rare Earth Composite Oxides
开发了基于Dy₂O₃/La₂O₃稀土复合氧化物的高性能催化发光传感平台, 用于1,2-环氧丙烷(PO)的特异性检测. 通过优化调控稀土氧化物的组成比例, Dy₂O₃/La₂O₃异质界面产生了显著的协同催化效应, 实现了对PO分子的高灵敏度与高选择性检测(LOD=82.8 μmol/L, 对PO的响应强度是干扰物的10倍以上). 在最佳实验条件下(检测波长575 nm, 检测温度360 ℃, 气体流速320 mL/min), 催化发光强度与PO浓度呈良好线性关系, 线性方程为y=9701.25x+15085.19, 检出限为8.28×10-5 mol/L, R2=0.9969. 该传感系统具有良好的稳定性(11次循环测试RSD<3%), 加标回收率为96%~108%. 基于实验结果提出了“光激发-氧活化-选择性氧化-特征发光”的传感机制. 本工作为开发新型稀土氧化物基传感材料提供了新策略, 并为环境挥发性有机物(VOCs)的识别与传感提供了创新解决方案.
In this study, we developed a high-performance cataluminescence(CTL) sensing platform based on Dy₂O₃/La₂O₃ rare-earth composite oxides for specific detection of 1,2-epoxypropane(PO). Through optimized composition regulation of the rare-earth oxides, the Dy₂O₃/La₂O₃ heterointerface demonstrated remarkable synergistic catalytic effects, achieving both high sensitivity(LOD=82.8 μmol/L) and exceptional selectivity(10-fold higher response to PO than interferents). Under optimal conditions(detection wavelength: 575 nm; temperature: 360 ℃; gas flow rate: 320 mL/min), the CTL intensity showed excellent linear correlation with PO concentration(y=701.25x+15085.19, R²=0.9969), with an ultralow detection limit(8.28×10⁻⁵ mol/L). The sensing system exhibited outstanding stability(RSD<3% over 11 cycles) and satisfactory recovery rates(96-108%). A "photoexcitation-oxygen activation-selective oxidation-characteristic luminescence" sensing mechanism was proposed. This work provides a novel strategy for developing rare-earth oxide-based sensing materials and offers an innovative solution for environmental VOC monitoring.
稀土复合氧化物 / 界面协同效应 / 环氧丙烷检测 / 催化发光传感器 / 气敏反应机理
Rare-earth composite oxides / Interfacial synergistic effect / Propylene oxide detection / Cataluminescence sensor / Gas-sensing reaction mechanism
| [1] |
Ren Y., Dong C., Song C., Qu Z., Environ. Sci. & Technol., 2024, 58(47), 20785—20811 |
| [2] |
Zhao J., Shi L., Zhang X., Song Z., Lu H., Abudula A., Xu G., Guan G., Coord. Chem. Rev., 2024, 518, 216060 |
| [3] |
Zhang N., Zhang J., Gao C., Yuan S., Wang Z., Desalination, 2025, 597, 118372 |
| [4] |
Sun X., Li J., Fan J., Fan J., Deng Q., Xu M., Huang H., Wu J., Ye D., J. Hazard. Mater., 2025, 491, 137958 |
| [5] |
Rehman S., Zheng X., Aujla M. I., Mehmood T., Chem. Eng. J., 2025, 505, 159257 |
| [6] |
Guo L., Bi F., Liu N., Zhang X., Sep. and Purif. Technol., 2025, 362, 131934 |
| [7] |
Chi M., Ke J., Liu Y., Wei M., Li H., Zhao J., Zhou Y., Gu Z., Geng Z., Zeng J., Nat. Commun., 2024, 15(1), 3646 |
| [8] |
Abdulhussain N., Nawada S., Schoenmakers P., Chem. Rev., 2021, 121(19), 12016—12034 |
| [9] |
Ma Y., Yao J., Zhou L., Zhao M., Liu J., Marchioni E., Food Chem., 2023, 410, 135432 |
| [10] |
Chen J., Zhang R., Guo S., Pan Y., Nezamzadeh⁃Ejhieh A., Lan Q., Talanta, 2025, 286, 127498 |
| [11] |
Meher N., Barman D., Parui R., Iyer P. K., J. Mater. Chem. C, 2022, 10(28), 10224—10254 |
| [12] |
Long Z., Ren H., Yang Y., Ouyang J., Na N., Anal. and Bioanal. Chem., 2016, 408(11), 2839—2859 |
| [13] |
Hu J., Zhang L., Su Y., Lv Y., Luminescence, 2020, 35(8), 1174—1184 |
| [14] |
Hu J., Zhang L., Lv Y., Appl. Spectrosc. Rev., 2019, 54(4), 306—324 |
| [15] |
Cheng W., Guan W., Lin Y., Lu C., Anal. Chem., 2022, 94(2), 1382—1389 |
| [16] |
Zhou Q., Yan S., Zhang L., Luminescence, 2022, 37(7), 1135—1144 |
| [17] |
Hu J., Chen C., Xie X., Zhang L., Song H., Lv Y., Anal. Chem., 2023, 95(6), 3516—3524 |
| [18] |
Hu Q., Cheng X., Zhang X., Xu Y., Gao S., Zhao H., Major Z., Huo L., Sensor. and Actuat. B: Chem., 2020, 305, 127434 |
| [19] |
Liu Z., Ho Li J. P., Vovk E., Zhu Y., Li S., Wang S., van Bavel A. P., Yang Y., ACS Catal., 2018, 8(12), 11761—11772 |
| [20] |
Li M., Hu Y., Li G., New J. Chem., 2021, 45(26), 11823—11830 |
| [21] |
Umar A., Ibrahim A. A., Kumar R., Almas T., Sandal P., Al⁃Assiri M. S., Mahnashi M. H., AlFarhan B. Z., Baskoutas S. Ceram. Int., 2020, 46(4), 5141—5148 |
| [22] |
Alonizan N., Madani M., Omri K., Abumousa R. A., Alyami A. A., Alqahtani M. E., Almarri H. M., Algrafy E. M., The Eur. Phys. J. Plus., 2023, 138(5), 398 |
| [23] |
Fleming P., Farrell R. A., Holmes J. D., Morris M. A., J. Am. Ceram. Soc., 2010, 93(4), 1187—1194 |
| [24] |
Jaffar B. M., Swart H. C., Seed Ahmed H. A. A., Yousif A., Kroon R. E., J. Phys. Chem. Solids, 2019, 131, 156—163 |
| [25] |
Ogugua S. N., Swart H. C., Ntwaeaborwa O. M., Sensors Actuat. B: Chem., 2017, 250, 285—299 |
| [26] |
Bhakta N., Das A., Das D., Yoshimura K., Bajorek A., Chakrabarti P. K., Mater. Chem. Phys., 2019, 227, 332—339 |
| [27] |
Ou Y., Zhou Y., Guo Y., Niu W., Wang Y., Jiao M., Gao C., ACS Sensors, 2023, 8(11), 4253—4263 |
| [28] |
Guo C. Y., Hu Q. C., Xu Y. M., Zhang X. F., Gao S., Zhao H., Xu M. M., Cheng X. L., Huo L. H., ACS Appl. Nano. Mater., 2021, 4(9), 9113—9122 |
| [29] |
Zhang Y., Liu J., Wang Y., Zhao Y., Li G., Bei K., Zhang G., Lv Y., Fuel, 2024, 367, 131562 |
| [30] |
Lee G. R., Song K., Hong D., An J., Roh Y., Kim M., Kim D., Jung Y. S., Park J. Y., Nat. Commun., 2025, 16(1), 2909 |
| [31] |
Ruiz Puigdollers A., Schlexer P., Tosoni S., Pacchioni G., ACS Catal., 2017, 7(10), 6493—6513 |
| [32] |
Karthikeyan S., Dhanakodi K., Shanmugasundaram K., Surendhiran S., Mater. Today: Proc., 2021, 47, 901—906 |
| [33] |
Song X., Ding Y., Zhang J., Jiang C., Liu Z., Lin C., Zheng W., Zeng Y., J. Mater. Res. and Technol., 2022, 20, 3549—3560 |
| [34] |
Achari V. S., Lopez R. M., Rajalakshmi A. S., Jayasree S., Shibin O. M., John D., Sekkar V., Sep. Purif. Technol., 2021, 279, 119626 |
| [35] |
Khan W. U., Hantoko D., Ahmed S., Shoaibi A. A., Chandrasekar S., Hossain M. M., Catal. Today, 2025, 453, 115277 |
| [36] |
Li M., Chen J. Y., Hu Y. F., Li G. K., Chinese J. Anal. Chem., 2019, 47(2), 191—196 |
/
| 〈 |
|
〉 |