苯并噻唑偶氮苯化合物的双模式光致变色性能及其在光信息存储中的应用
李达 , 郭鹍鹏 , 张芳 , 周姝宇
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (09) : 70 -76.
苯并噻唑偶氮苯化合物的双模式光致变色性能及其在光信息存储中的应用
Dual-mode Photochromic Properties of a Benzothiazole-azobenzene Compound and Its Application in Optical Information Storage
通过重氮偶合反应合成了一种新型苯并噻唑偶氮苯类光致变色化合物(BTA), 并对其化学结构进行了表征. 利用吸收光谱、 荧光光谱、 红外光谱及理论模拟计算, 研究了BTA的光响应性能、 作用机理及其应用前景. 结果表明, 基于顺反异构转变机制, BTA溶液在紫外光照射下可迅速由黄色变为无色, 并伴随青色荧光的发射, 而在白光照射与60 ℃加热协同作用下, 其颜色和荧光可恢复至初始状态, 表现出优异的可逆双模式光致变色行为. 进一步将BTA与聚甲基丙烯酸甲酯(PMMA)掺杂, 制备的薄膜实现了可擦写光信息存储. 本研究为双模式光致变色材料的设计及其在智能光电器件中的应用提供了新的思路和实验依据.
A novel benzothiazole azobenzene based photochromic compound(BTA) was synthesized through diazocoupling reaction. Its chemical structure was confirmed, and the photoresponsive properties, mechanism, and application prospects were studied by means of UV-Vis spectra, PL spectra, FTIR spectra, and theoretical calculations. The results indicated that based on the mechanism of cis-trans isomerization, BTA solution rapidly changed from yellow to colorless and emitted blue fluorescence under UV light irradiation and could be restored to its initial state by visible light irradiation under 60 ℃ heating, exhibiting reversible dual-mode photochromic phenomenon. The film prepared by doping BTA with polymethyl methacrylate(PMMA) successfully achieved erasable optical information storage. This study provides valuable insights and experimental evidence for the design of dual-mode photochromic materials and their applications in smart optoelectronic devices.
光致变色 / 偶氮苯 / 苯并噻唑 / 光信息存储 / 顺反异构
Photochromism / Azobenzene / Benzothiazole / Optical information storage / Cis⁃trans isomerization
| [1] |
Goulet⁃Hanssens A., Eisenreich F., Hecht S., Adv. Mater., 2020, 32(20), 1905966 |
| [2] |
Smith A. T., Ding H., Gorski A., Zhang M., Gitman P. A., Park C., Hao Z. R., Jiang Y. J., Williams B. L., Zeng S. S., Kokkula A., Yu Q. K., Ding G. Q., Zeng H. D., Sun L. Y., Matter, 2020, 2(3), 680—696 |
| [3] |
Hu J. X., Zhang Q., Xia B., Liu T., Pang J. D., Bu, X. H., Chem. Res. Chinese Universities, 2021, 38(1), 58—66 |
| [4] |
Wang Y. X., Chen Y. L, Chem. Res. Chin. Univ., 2024, 41(1), 33—39 |
| [5] |
Li J. T., Bisoyi H. K., Tian J. J., Guo J. B., Li Q., Adv. Mater., 2019, 31(10), 1807751 |
| [6] |
Luo M., Liu Y. Y., Zhao J., Jiang L., Chen X. J., Li W. L., Yang Z. Y., Yan Q., Wang S., Chi Z. G., Dyes Pigments, 2022, 202, 110222 |
| [7] |
Guo H. J., Liu L. L., Wang L., Shi Q. F., Qiao J. W., Cui C. E., Huang P., Wang Y. H., Laser Photonics Rev., 2025, 2402308 |
| [8] |
Liu K. J, Wei R. Q., Zhou R. Y., Shen R. P., Han J., Chem. J. Chinese Universities, 2024, 45(9), 20240201 |
| [9] |
刘珂君, 魏瑞琪, 周睿远, 沈日佩, 韩杰. 高等学校化学学报, 2024, 45(9), 20240201 |
| [10] |
Li Y. Z., Chen X. Y., Weng T. Y., Yang J. F., Zhao C. R., Wu B., Zhang M., Zhu L. L., Zou Q., RSC Adv., 2020, 10(69), 42194—42199 |
| [11] |
Yang J. F., Zou Q., Chen,X. Y., Li Y. Z., Zhao C. R., Weng T. Y., Wu B., Zhu L. L., Wang D. L., Xin Z. L., Dyes Pigments, 2021, 191, 109361 |
| [12] |
Khuzin A. A., Galimov D. I., Khuzina L. L., Tukhbatullin A. A., Molecules, 2024, 29(2), 368 |
| [13] |
Wang X. H., Xu B., Tian W. J., Light Sci. Appl., 2023, 12(1), 140 |
| [14] |
Liu T. L., Huang C. S., Wang J. J., Liang Y., Xie Z. P., Zhuang H. Y., Li J. L., Zhu X. F., Fine Chem., 2024, 41(12), 2564—2579 |
| [15] |
刘同力, 黄从树, 王晶晶, 梁宇, 谢志鹏, 庄海燕, 李九龙, 朱绪飞. 精细化工, 2024, 41(12), 2564—2579 |
| [16] |
Medhi B., Nath U., Sarma M., J. Chem. Phys., 2024, 160(15), 154308 |
| [17] |
Du Y., Huang C. R., Xu Z. K., Hu W., Li P. F., Xiong R. G., Wang Z. X., JACS Au, 2023, 3(5), 1464—1471 |
| [18] |
Razeghi R., Kazemi F., Kaboudin B., Olyaei A., Yokomatsu T., Can. J. Chem., 2021, 99(4), 368—381 |
| [19] |
Archut A., Vögtle F., De Cola L., Azzellini G. C., Balzani V., Ramanujam P. S., Berg R. H., Chem. Eur. J., 1998, 4(4), 699—706 |
| [20] |
Dong M., Babalhavaeji A., Collins C. V., Jarrah K., Sadovski O., Dai Q. Y., Woolley G. A., J. Am. Chem. Soc., 2017, 139(38), 13483—13486 |
| [21] |
Jerca F. A., Jerca V. V., Hoogenboom R., Nat. Rev. Chem., 2022, 6(1), 51—69 |
| [22] |
Li Y. R., Xue B., Yang J. H., Jiang J. L., Liu J., Zhou Y. Y., Zhang J. S., Wu M. J., Yuan Y., Zhu Z. S., Wang Z. J., Chen Y. L., Harabuchi Y., Nakajima T., Wang W., Maeda S., Gong J. P., Cao Y., Nat. Chem., 2024, 16(3), 446—455 |
| [23] |
Yan J. F., Men R. X., Chen X. X., Lin C. X., Nockemann P., Yuan Y. F., New J. Chem., 2021, 45(42), 19917—19927 |
| [24] |
Kamińska K., Iwan D., Iglesias⁃Reguant A., Spałek W., Daszkiewicz M., Sobolewska A., Zaleśny R., Wojaczyńska E., Bartkiewicz S., J. Mol. Liq., 2022, 363,119869 |
| [25] |
Sato D., Goto H., Ishizaki Y., Narimatsu T., Kato T., Organics, 2022, 3(4), 415—429 |
| [26] |
Fan S. J., Lam Y., He L., Xin J. H., R. Soc. Open Sci., 2022, 9(6), 211894 |
| [27] |
Hu X. H., Liu X., Liu M. L., Li G., Cheng C. L., Polym. Bull., 2019, 76(7), 3437—3450 |
| [28] |
Li D., Liu A. L., Xing Y. F., Li Z. J., Luo Y., Zhao S. J., Dong L. L., Xie T. Y., Guo K. P., Li J., Dyes Pigments, 2023, 213,111180 |
| [29] |
Salarvand Z., Amirnasr M., Talebian M., Raeissi K., Meghdadi S., Corros. Sci., 2017, 114, 133—145 |
| [30] |
Dcona M. M., Mitra K., Hartman M. C. T., RSC Med. Chem., 2020, 11(9), 982—1002 |
| [31] |
Craig N. C., Hu Chao T. N., Cuellar E., Hendriksen D. E., Koepke J. W., J. Phys. Chem., 1975, 79(21), 2270—2282 |
| [32] |
Gholami M. D., Manzhos S., Sonar P., Ayoko G. A., Izake E. L., Analyst, 2019, 144(16), 4908—4916 |
| [33] |
Li S. Y., Chai Y. D., Zhang J., Wang J., Yang C. Zhang J., Cheng S. X., J. Saudi Chem. Soc., 2024, 28(4), 101880 |
| [34] |
Yin D. F., Cheng H. B., Huo X. L., Li H. N., Pang M. L., Chem. J. Chinese Universities, 2011, 32(10), 2301—2305 |
| [35] |
殷德飞, 程红波, 霍晓莲, 李海宁, 庞美丽. 高等学校化学学报, 2011, 32(10), 2301—2305 |
| [36] |
Luo Q. F., Cao F., Xiong C. C., Dou Q. Y., Qu D. H., J. Org. Chem., 2017, 82(20), 10960—10967 |
山西工程科技职业大学校科研基金项目(KJ202416)
山西省科技厅基础研究计划青年项目(202303021212290)
/
| 〈 |
|
〉 |