一种新型蒽基二维共价有机框架纳米片用于单线态氧的快速捕获和可控释放
安静 , 苗波 , 赵桐依 , 宋佳隆 , 张文娱 , 袁碧贞 , 刘耀祖 , 钟恬 , 方千荣
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (12) : 1 -7.
一种新型蒽基二维共价有机框架纳米片用于单线态氧的快速捕获和可控释放
A Novel Anthracene-based Two-dimensional Covalent Organic Framework Nanosheet for Rapid Singlet Oxygen Capture and Controllable Release
单线态氧(1O₂)是一种高度活泼的物质, 具有强氧化性, 在光动力治疗、 有机合成和材料科学等领域具有重要应用价值. 然而, 1O₂的短寿命和高反应性使其实际应用面临挑战. 为克服这些挑战, 开发可用于1O₂的高效捕获与可控释放的材料已引起了广泛关注. 共价有机框架(COFs)具有独特的晶体结构、 高孔隙度和优异的稳定性, 是理想的1O₂存储和传输材料. 本文设计并合成了以蒽为核心单元的二维COF(2D An COF), 并进一步通过剥离得到纳米片(2D An COF-nanosheet), 以提高其性能. 荧光光谱分析表明, 与块体2D An COF相比, 2D An COF-nanosheet表现出更高的1O₂捕获速率, 这归因于其更多暴露的活性位点. 2D An COF及其剥离后的纳米片在外部热或光刺激下, 1O₂释放过程表现出优异的可逆性, 且经过多次循环后性能无显著衰退. 研究结果突显了二维COF材料, 特别是纳米片形态的二维COF材料, 在1O₂存储和释放中的高效和稳定性. 本研究为设计基于二维共价有机框架的1O₂存储与释放材料提供了新的思路, 并为其在光动力治疗法和光催化等领域的应用奠定了理论基础.
Singlet oxygen(¹O₂) is a highly reactive species with strong oxidizing properties, making it valuable in various applications, including photodynamic therapy, organic synthesis and material science. However, its short lifetime and high reactivity present significant challenges in its practical use. To overcome these challenges, the development of efficient materials for ¹O₂ capture and controlled release has attracted considerable attention. Covalent organic frameworks(COFs), with their unique crystalline structure, high porosity and exceptional stability, have emerged as ideal candidates for ¹O₂ storage and transfer. In this study, we designed and synthesized a two-dimensional anthracene-based COF(2D An COF), which was further exfoliated into nanosheet(2D An COF-nanosheet) to enhance its performance. Fluorescence spectroscopy analysis demonstrated that the 2D An COF-nanosheet exhibited a significantly higher ¹O₂ capture rate compared to the bulk COF, which can be attributed to their more exposed active sites. Both the 2D An COF and its exfoliated nanosheet showed excellent reversibility in ¹O₂ release when exposed to external thermal or light stimuli, with no significant degradation in performance after multiple cycles. The results highlight the potential of 2D COF materials, particularly in nanosheet form, as efficient and stable platforms for ¹O₂ storage and release. This work provides new theoretical insights into the design of ¹O₂-responsive materials and opens new avenues for applications in photodynamic therapy, photocatalysis and other fields requiring precise control over reactive oxygen species.
多孔材料 / 共价有机框架 / 纳米片 / 蒽基单元 / 单线态氧捕获与释放
Porous material / Covalent organic framework / Nanosheet / Anthracene unit / Singlet oxygen capture and release
| [1] |
Fudickar W., Fery A., Linker T., J. Am. Chem. Soc., 2005, 127, 9386—9387 |
| [2] |
Fujimura M., Kusaka S., Masuda A., Hori A., Hijikata Y., Pirillo J., Ma Y., Matsuda R., Small, 2021, 17, e2004351 |
| [3] |
Kim S., Tachikawa T., Fujitsuka M., Majima T., J. Am. Chem. Soc., 2014, 136, 11707—11715 |
| [4] |
Lai H., Yan J., Liu S., Yang Q., Xin F., Xiao P., Angew. Chem. Int. Ed., 2020, 59, 10431—10435 |
| [5] |
Li X., Zhang G., Ma H., Zhang D., Li J., Zhu D., J. Am. Chem. Soc., 2004, 126, 11543—11548 |
| [6] |
Liu K., Lalancette R. A., Jakle F., J. Am. Chem. Soc., 2017, 139, 18170—18173 |
| [7] |
Mongin C., Ardoy A. M., Mereau R., Bassani D. M., Bibal B., Chem. Sci., 2020, 11, 1478—1484 |
| [8] |
Omoto K., Tashiro S., Shionoya M., J. Am. Chem. Soc., 2021, 143, 5406—5412 |
| [9] |
You Y., Org. Biomol. Chem., 2018, 16, 4044—4060 |
| [10] |
Ogilby C. S., Chem. Soc. Rev., 2010, 39, 3181—3209 |
| [11] |
Martinez G. R., Ravanat J. L., Medeiros M. H. G., Cadet J., Di Mascio P., J. Am. Chem. Soc., 2000, 122, 10212—10213 |
| [12] |
Zeng J. Y., Wang X. S., Qi Y. D., Yu Y., Zeng X., Zhang X. Z., Angew. Chem. Int. Ed., 2019, 58, 5692—5696 |
| [13] |
He Y. Q., Fudickar W., Tang J. H., Wang W. H., Li X., Han J., Wang Z., Liu M., Zhong Y. W., Linker T., Stang P. J., J. Am. Chem. Soc., 2020, 142, 2601—2608 |
| [14] |
Chang S., Li C., Li H., Zhu L., Fang Q., Chem. Res. Chinese Universities, 2022, 38(2), 396—401 |
| [15] |
Song J., Wang Z., Liu Y., Tuo C., Wang Y., Fang Q., Qiu S., Chem. Res. Chinese Universities, 2022, 38(3), 834—837 |
| [16] |
Wang H., Zeng Z., Xu P., Li L., Zeng G., Xiao R., Tang Z., Huang D., Tang L., Lai C., Jiang D., Liu Y., Yi H., Qin L., Ye S., Ren X., Tang W., Chem. Soc. Rev., 2019, 48, 488—516 |
| [17] |
Wang Z. T., Li H., Yan S. C., Fang Q. R., Acta Chim. Sinica, 2020, 78, 63—68 |
| [18] |
王志涛, 李辉, 颜士臣, 方千荣. 化学学报, 2020, 78, 63—68 |
| [19] |
Dong W., Qin Z., Liu X., Li L., Chin. J. Chem., 2025, 43, 1504—1512 |
| [20] |
Fang J., Zhao W. J., Zhang M. H., Fang Q. R., Acta Chim. Sinica, 2021, 79, 186—191 |
| [21] |
方婧, 赵文娟, 张明浩, 方千荣. 化学学报, 2021, 79, 186—191 |
| [22] |
Kong X. Y., Liao L., Lu C. Z., Fang Q. R., Chem. J. Chinese Universities, 2023, 44(12), 20230282 |
| [23] |
孔祥宇, 廖力, 卢灿忠, 方千荣. 高等学校化学学报, 2023, 44(12), 20230282 |
| [24] |
Li S. S., Zhao W. J., Li H., Fang Q. R., Chem. J. Chinese Universities, 2020, 41(6), 1384—1390 |
| [25] |
李闪闪, 赵文娟, 李辉, 方千荣. 高等学校化学学报, 2020, 41(6), 1384—1390 |
| [26] |
Luo, X., Chen Y., Lin J., Luo J., Xia R., Yin N., Lin Y., Duan H., Ren S., Gao Q., Ning G., Li D., Chin. J. Chem., 2025, 43, 1199—1207 |
| [27] |
Luo Y., Li B., Wang W., Wu K., Tan B., Adv. Mater., 2012, 24, 5703—5707 |
| [28] |
Demessence A., Alessandro D. M. D., Foo M. L., Long J. R., J. Am. Chem. Soc., 2009, 131, 8784—8786 |
| [29] |
Lu W., Yuan D., Sculley J., Zhao D., Krishna R., Zhou H., J. Am. Chem. Soc., 2011, 133, 18126—18129 |
| [30] |
Rao M. R., Fang Y., Feyter S. D., Perepichka D. F., J. Am. Chem. Soc., 2017, 139, 2421—2427 |
| [31] |
Feng X., Ding X., Jiang D., Chem. Soc. Rev., 2012, 41, 6010—6022 |
| [32] |
Tao H., Ji C., Zhang J., Yin Y., Jia W., Jiang X., Xu J., Yang Y., Chem. Res. Chinese Universities, 2024, 40(3), 499—507 |
| [33] |
Liu Y., Ren J., Wang Y., Zhu X., Guan X., Wang Z., Zhou Y., Zhu L., Qiu S., Xiao S., Fang Q., CCS Chem., 2022, 5, 2033—2045 |
| [34] |
Accelrys Inc., Materials Studio, Version 7.0, San Diego, 2013. |
| [35] |
Zhen W., Kang D. W., Fan Y., J. Am. Chem. Soc., 2024, 146, 16609—16618 |
| [36] |
Peng Y., Li Y., Ban Y., Jin H., Jiao W., Liu X., Yang W., Science, 2014, 346, 1356—1359 |
| [37] |
Zhao M., Huang Y., Peng Y., Huang Z., Ma Q., Zhang H., Chem. Soc. Rev., 2018, 47, 6267—6295 |
/
| 〈 |
|
〉 |