原位构筑Co-MOFs/碳纤维复合电芬顿阴极及其高效降解四环素
秦彩翼 , 李娟 , 李莹 , 张九文 , 龙含意 , 李信宇 , 米楠 , 刘金炜 , 李华
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (08) : 64 -72.
原位构筑Co-MOFs/碳纤维复合电芬顿阴极及其高效降解四环素
In⁃situ Construction of Co-MOFs/Carbon Fiber Composite Cathodes and their Efficient Degradation of Tetracycline in the Electro-Fenton System
传统的芬顿氧化法通过Fe²⁺催化H₂O₂生成羟基自由基(•OH), 能够高效降解水中抗生素类有机污染物, 但铁泥产生量大、 Fe²⁺再生困难及二次污染的问题限制了其广泛应用. 电芬顿技术结合电化学和芬顿氧化过程, 可以显著提升H₂O₂的活化效率. 使用钴基金属有机框架(Co-MOFs)作为电芬顿催化剂不但具有高的催化活性和稳定性, 而且可以避免铁泥的产生, 达到高效降解去除水中抗生素类有机污染物的目的. 本文在碳纤维电极上原位生长Co-MOFs纳米晶材料, 并以该复合材料为阴极, 铂片为阳极, 构建了非均相电芬顿体系. 通过调控纳米晶材料的制备方法、 配体类型、 配体和金属比例、 煅烧温度及氛围、 体系电压及H2O2添加量等条件, 探索出最佳制备条件: 在水热反应条件下, 对苯二甲酸和钴盐以摩尔比1∶1配位合成Co-MOFs, 并原位生长于碳纤维基底上, 在100 ℃空气氛围下煅烧活化. 通过优化反应体系, 确定了最佳反应条件: 电压为-0.8 V, H2O2添加量为60 μL, 最终90 min时四环素的降解率为91%.
The traditional Fenton method catalyzes the H₂O₂ by Fe²⁺ to generate hydroxyl radicals (•OH), which can efficiently degrade antibiotic organic pollutants in water. However, its wide application is limited by the large amount of iron sludge, the difficulty of Fe²⁺ regeneration and the problems of secondary pollution. The electro-Fenton technology combines electrochemistry and the Fenton oxidation process to significantly improve the efficiency of H₂O₂ activation. The use of cobalt-based metal organic frameworks(Co-MOFs) as electric Fenton catalysts has high catalytic activity and stability, which can avoid the generation of iron sludge and achieve the purpose of efficient degradation and removal of antibiotic organic pollutants in water. In this paper, Co-MOFs nanocrystalline materials were grown in situ on carbon fiber electrodes, and heterogeneous electric Fenton systems were constructed with the composite material as the cathode and platinum sheets as the anode. By adjusting the preparation method, the type of ligand, the ratio of ligand to metal, the calcination temperature, the system voltage, and the amount of H2O2 added, the optimal preparation conditions were explored: under the hydrothermal condition, Co-MOFs were synthesized by 1∶1 coordination of terephthalic acid and cobalt salt, which were grown in situ on a carbon fiber substrate, and calcined and activated under 100 ℃ in air. The optimal reaction conditions are: the voltage was -0.8 V and the H2O2 addition was 60 μL, and the degradation effect of tetracycline was 91% in 90 min.
Fenton reaction / Electrocatalysis / Metal organic framework compound / Antibiotic
| [1] |
Wang Y., Zhang P., Li F., Solid State Sci., 2024, 158, 107763 |
| [2] |
Wang F., Guo J., Zhu Z., J. Water Process Eng., 2024, 68, 106577 |
| [3] |
Betianu C., Gavrilescu M., Environment. Engin. Management J., 2006, 5, 1011—1028 |
| [4] |
Shu Y., Liang D., PLoS One, 2022, 17(1), e0261306 |
| [5] |
Xiao H., Wang Y., Peng H., Int. J. Environ. Res. Public Health, 2022, 19(18), 11447 |
| [6] |
Chen S. F., Zhang S. J., Liu W., J. Hazard. Mater., 2008, 155(1), 320—326 |
| [7] |
Sun W. X., Zhou L. L., Liu G. S., Chem. Eng. J., 2023, 463, 142419 |
| [8] |
Li X., Yang J., Shi X., Environ. Res., 2024, 266, 120577 |
| [9] |
Barhoumi N., Oturan N., Olvera⁃Vargas H., Water Res., 2016, 94, 52—61 |
| [10] |
Wang S., Lyu Y. Q., Liu X. Y., Li Y., Chem. J. Chinese Universities, 2024, 45(9), 20240247 |
| [11] |
王爽, 吕月琴, 刘星宇, 李轶. 高等学校化学学报, 2024, 45(9), 20240247 |
| [12] |
Zheng H., Cheng S., Shen C., Yu W. H., Liu F. Q., J. Civil Environ. Engin., 2021, 43(6), 124—133 |
| [13] |
郑豪, 程松, 沈晨, 于伟华, 刘福强. 土木与环境工程学报, 2021, 43(6), 124—133 |
| [14] |
Song J., Hou N., Liu X., Antonietti M., Zhang P., Ding R., Song L., Wang Y., Mu Y., Adv. Mater., 2023, 35, 2209552 |
| [15] |
Ma Z., Dong W., Xia Q., Environ. Chem., 2023, 42(11), 3976—3985 |
| [16] |
Ji H., Liu Y., Du G., Huang T., Zhu Y., Sun Y., Pang H., Chem. Res. Chinese Universities, 2024, 40(6), 943—963 |
| [17] |
Li X., Li X., Wang B., J. Hazard. Mater., 2022, 440, 129757 |
| [18] |
Cao L., Lin Z., Peng F., Angew. Chem. Int. Ed., 2016, 55(16), 4962—4966 |
| [19] |
Zhao W., Peng J., Wang W., Coord. Chem. Rev., 2018, 377, 44—63 |
| [20] |
Minh T. T., Thien T. V., Hue Univ. J. Sci.(Natural Science), 2017,126(2B), 107—116 |
| [21] |
Cheng M., Lai C., Liu Y., Zeng G., Huang D., Zhang C., Qin L., Hu L., Zhou C., Xiong W., Coord. Chem. Rev., 2018, 368, 80—92 |
| [22] |
Narciso J., Ramos⁃Fernandez E. V., Delgado J., Affolter C. W., Olsbye U., Redekop E. A., Microporous Mesoporous Mater., 2021, 324, 111310 |
| [23] |
Muthukumar P., Arunkumar G., Pannipara M., New J. Chem., 2023, 47(32), 20831—20837 |
| [24] |
Yang M., Zhou Y., Cao Y., Appl. Mater. Today, 2020, 20, 100692 |
| [25] |
Wang N., J. Power Sources, 2022, 517, 230707 |
| [26] |
Sun D., J. Electroanal. Chem., 2021, 899, 115676 |
| [27] |
Tao X., Yuan X., Huang L., RSC Adv., 2020, 10, 36363—36370 |
| [28] |
Wang H., Tang C., Wang L., Appl. Catal. B: Environ., 2023, 333, 122755 |
| [29] |
Wang Y., Chem. Eng. J., 2021, 414, 128940 |
| [30] |
Zhu Y., Yue K., Xia C., Zaman S., Yang H., Wang X., Yan Y., Xia B. Y., Nano⁃Micro Lett., 2021, 13(1), 137 |
| [31] |
Chen Y. Y., Tian Y. P., Liu Q. C., Li F., Li Q. M., J. Mole. Catal., 2024, 38(1), 63—70 |
| [32] |
陈一莹, 田亚萍, 刘青翠, 李芳, 李其明. 分子催化, 2024, 38(1), 63—70 |
| [33] |
Cheng S., Shen C., Zheng H., Appl. Catal. B: Environ., 2020, 269, 118785 |
| [34] |
Cao P., Zhao K., Quan X., Sep. Purif. Technol., 2020, 238, 116424 |
| [35] |
Zhu Y., J. Hazard. Mater., 2021, 414, 125517 |
| [36] |
Yang W., Zhou M., Oturan N., Electrochimica Acta, 2019, 305, 285—294 |
| [37] |
Zhao L. F., Wan N., Huang Y. T., Yue T. T., Feng W., J. Jilin Univ.(Science Edition), 2023, 61(4), 982—990 |
| [38] |
赵龙飞, 万宁, 黄雨婷, 岳彤彤, 冯威. 吉林大学学报(理学版), 2023, 61(4), 982—990 |
| [39] |
Chao J., Yang X., Zhu Y., Shen J., J. Colloid Interface Sci., 2024, 673, 434—443 |
| [40] |
Cui C. L., Hao Z. H., Shu Y. C., Xu J. X., Wang L., Acta Mater. Compos. Sinica, 2025, 42(3), 1354—1367 |
| [41] |
崔春丽, 郝振华, 舒永春, 徐继香, 王磊. 复合材料学报, 2025, 42(3), 1354—1367 |
/
| 〈 |
|
〉 |