化学酶法解析乳腺癌细胞治疗性早衰进程中线粒体蛋白质O⁃GlcNAc修饰时序性改变
蒋馨雅 , 马起乐 , 程洪英 , 刘寅 , 黄煌 , 赵然 , 刘宇博 , 仲小敏
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (10) : 44 -54.
化学酶法解析乳腺癌细胞治疗性早衰进程中线粒体蛋白质O⁃GlcNAc修饰时序性改变
Chemical Enzymatic Analysis of Temporal Alterations in Mitochondrial Protein O-GlcNAc Modification during the Therapeutic Senescence Process of Breast Cancer Cells
细胞早性衰老与线粒体功能障碍密切相关. 本文以阿霉素诱导乳腺癌细胞MCF-7构建了治疗性早性衰老细胞模型, 采用基于Gal-T1酶(Y289L)的化学酶法标记早衰进程中多个时间点的MCF-7细胞线粒体 O-GlcNAc糖蛋白质组, 通过点击化学反应正交捕获线粒体糖蛋白, 利用LC-MS/MS进行非标定量蛋白质组学分析, 研究了细胞早性衰老进程中线粒体O-GlcNAc糖蛋白的时序性定量变化, 并对其进行了生物学功能富集解析, 以寻找参与调控乳腺癌细胞早性衰老的线粒体O-GlcNAc修饰蛋白, 从而解析线粒体O-GlcNAc糖基化调控细胞早性衰老的机制.
Cellular premature senescence is closely related to mitochondrial dysfunction. In this study, doxorubicin was used to induce breast cancer cells MCF-7 to establish a model of therapeutic premature senescence cells. The chemical enzymatic method based on GalT1 enzyme(Y289L) was employed to label the mitochondrial O-GlcNAc glycoproteome of MCF-7 cells at multiple time points during the premature senescence process. Click chemistry reaction was utilized to orthogonally capture mitochondrial glycoproteins. Label-free quantitative proteomics analysis was carried out through LC-MS/MS to investigate the temporal quantitative changes of mitochondrial O-GlcNAc glycoproteins during the cellular premature senescence process. Moreover, the biological function enrichment analysis was conducted to identify mitochondrial O-GlcNAc modified proteins involved in the regulation of premature senescence of breast cancer cells, and to elucidate the mechanism by which mitochondrial O-GlcNAc glycosylation regulates cellular premature senescence.
化学酶标记 / 细胞早性衰老 / O-GlcNAc修饰 / 蛋白质组学
Chemoenzymatic labelling method / Cell senescence / O-GlcNAcylation / Proteomics
支持信息见http: //www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20250121.
| [1] |
Chaib S., Tchkonia T., Kirkland J. L., Nat. Med., 2022, 28(8), 1556—1568 |
| [2] |
Huang W., Hickson L. T. J., Eirin A., Kirkland J. L., Lerman L. O., Nat. Rev. Nephrol., 2022, 18(10), 611—627 |
| [3] |
Di Micco R., Krizhanovsky V., Baker D., di Fagagna F. D., Nat. Rev. Mol. Cell Bio., 2021, 22(2), 75—95 |
| [4] |
Hu B. T., Xing Y., Li Y., Li F., Chin. J. Biochem. Mol. Biol., 2021, 37(4), 495—503 |
| [5] |
Hayflick L., Moorhead P. S., Exp. Cell. Res., 1961, 25(3), 585—621 |
| [6] |
Schmitt C. A., Wang B. S., Demaria M., Nat. Rev. Clin. Oncol., 2022, 19(10), 619—636 |
| [7] |
Chan A. S. L., Zhu H. R., Narita M., Cassidy L. D., Young A. R. J., Bermejo⁃Rodriguez C., Janowska A. T., Chen H. C., Gough S., Oshimori N., Zender L., Aitken S. J., Hoare M., Narita M., Nature, 2024, 633(8030), 678—685 |
| [8] |
Kim Y. H., Choi Y. W., Lee J., Soh E.Y., Kim J. H., Park T. J., Nat. Commun., 2017, 8, 15208 |
| [9] |
Serrano M., Lin A. W., McCurrach M. E., Beach D., Lowe S. W., Cell, 1997, 88(5), 593—602 |
| [10] |
Sritharan S., Sivalingam N., Life Sci., 2021, 278, 119527 |
| [11] |
Wang L. Q., Lankhorst L., Bernards R., Nat. Rev. Cancer, 2022, 22(6), 340—355 |
| [12] |
Ma J. F., Hart G. W., Clin. Proteomics, 2014, 11, 8 |
| [13] |
Meng L. H., Zhang W., Wang J. J., Chin. J. Biochem. Mol. Biol., 2024, 40(4), 463—473 |
| [14] |
Wulff⁃Fuentes E., Berendt R. R., Massman L., Danner L., Malard F., Vora J., Kahsay R., Stichelen S. O. V., Sci. Data, 2021, 8(1), 25 |
| [15] |
Ma J. F., Hou C. Y., Wu C., Chem. Rev., 2022, 122(20), 15822—15864 |
| [16] |
Saha A., Bello D., Fernández⁃Tejada A., Chem. Soc. Rev., 2021, 50(18), 10451—10485 |
| [17] |
Lubas W. A., Frank D. W., Krause M., Hanover J. A., J. Biol. Chem., 1997, 272(14), 9316—9324 |
| [18] |
Trapannone R., Mariappa D., Ferenbach A. T., van Aalten D. M. F., Biochem. J., 2016, 473(12), 1693—1702 |
| [19] |
Dontaine J., Bouali A., Daussin F., Bultot L., Vertommen D., Martin M., Rathagirishnan R., Cuillerier A., Horman S., Beauloye C., Gatto L., Lauzier B., Bertrand L., Burelle Y., Commun. Biol., 2022, 5(1), 349 |
| [20] |
Gao Y. Y., Wu T., Tang X. A., Wen J. Y., Zhang Y., Zhang J. J., Wang S. X., Geroscience, 2023, 45(3), 1775—1790 |
| [21] |
Jia F. Y., Jiang T., Xu W., Chem. Res. Chinese Universities, 2025, 41(2), 211—221 |
| [22] |
Yu Y. L., Fan J. H., Liu H. H., Nie Z. X., Chem. Res. Chinese Universities, 2025, 41(2), 254—265 |
| [23] |
Hein J. E., Fokin V. V., Chem. Soc. Rev., 2010, 39(4), 1302—1315 |
| [24] |
Pan Y. B., Tang W., Fan W. P., Zhang J. M., Chen X. Y., Chem. Soc. Rev., 2022, 51(23), 9759—9830 |
| [25] |
Kubota Y., Fujioka K., Takekawa M., PLoS One, 2017, 12(7), e0180714 |
| [26] |
Zou L. Y., Zhang D. G., Ha C. M., Wende A. R., Chatham J. C., Am. J. Physiol. Heart C, 2023, 325(4), H601—H616 |
| [27] |
Yang W. M., Tian E., Chernish A., McCluggage P., Dalal K., Lara A., Ten Hagen K. G., Tabak L. A., Proc. Natl. Acad. Sci. USA, 2023, 120(43), e2303703120 |
| [28] |
Victorelli S., Salmonowicz H., Chapman J., Martini H., Vizioli M. G., Riley J. S., Cloix C., Hall⁃Younger E., Espindola⁃Netto J. M., Jurk D., Lagnado A. B., Gomez L. S., Farr J. N., Saul D., Reed R., Kelly G., Eppard M., Greaves L. C., Dou Z. X., Pirius N., Szczepanowska K., Porritt R. A., Huang H. J., Huang T. Y., Mann D. A., Masuda C. A., Khosla S., Dai H. M., Kaufmann S. H., Zacharioudakis E., Gavathiotis E., LeBrasseur N. K., Lei X., Sainz A. G., Korolchuk V. I., Adams P. D., Shadel G. S., Tait S. W. G., Passos J. F., Nature, 2023, 622(7983), 627—636 |
| [29] |
Hu Y. H., Zheng Y. J., Liu C., You Y. Y., Wu Y., Wang P. X., Wu Y. Y., Ba H. J., Lu J., Yuan Y. Q., Liu P. Q., Mao Y., Cell Rep., 2024, 43(10), 114839 |
| [30] |
Wang Y., Li Y. Q., Zhong J. P., Li M., Zhou Y. J., Lin Q., Zong S. W., Luo W. T., Wang J. Y., Wang K. Q., Wang J., Xiong L. X., Theranostics, 2023, 13(5), 1684—1697 |
徐州医科大学附属医院科技发展基金(XYFZ202204)
江苏省研究生实践创新计划(SJCX24_1559)
/
| 〈 |
|
〉 |