碳中和背景下甲烷高值转化路径分析
Analysis of High Value Methane Conversion Pathways in the Context of Carbon Neutrality
甲烷作为一种重要化工原料, 具有储量大、 成本低及可再生的特点. 在当前碳中和及净零碳排放的背景下, 探索甲烷高值化学品转化的可行路径, 如转化为氢气、 甲醇、 烯烃、 芳烃和燃料等, 是甲烷资源化利用的重要方向. 开发温和反应条件、 低能耗且经济友好的高值转化路线, 以实现甲烷中碳(C)原子和氢(H)原子的高效利用一直是研究热点. 本文综合评述了近年来甲烷转化为高值化学品的研究进展, 并对热催化中不同转化路径的相关文献和专利进行了计量学分析, 在此基础上展望了甲烷转化未来面临的挑战和前景.
As a pivotal chemical feedstock, methane is characterized by its abundant reserves, cost-effectiveness, and renewability. In the context of global carbon neutrality and net-zero emission initiatives, developing high-value conversion pathways for methane, such as hydrogen production, methanol synthesis, olefin/aromatic generation, and clean fuel manufacturing, has emerged as a strategic approach to maximize its utilization potential. Significant research efforts have been directed toward establishing energy-efficient and economically viable conversion systems to maximize the utilization efficiency of its carbon and hydrogen atoms. This review systematically examines recent advancements in methane conversion technologies for high-value chemical synthesis, and conducts a statistical analysis of relevant literature and patents on different conversion pathways based on thermal catalysis. With these foundational assessments, the future challenges and prospects of methane conversion are prospected.
气候变化 / 碳中和 / 甲烷转化 / 热催化 / 高值化学品
Climate change / Carbon neutrality / Methane conversion / Thermal catalysis / High value chemical
| [1] |
Seneviratne S. I., Donat M. G., Pitman A. J., Knutti R., Wilby R. L., Nature, 2016, 529(7587), 477—483 |
| [2] |
Masson⁃Delmotte V., Zhai P., Pirani A., Connors S. L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M., Huang M., Leitzell K., Lonnoy E., Matthews J., Maycock T., Waterfield T., Yeleksi O., Yu R., Zhou B., The Intergovernmental Panel on Climate Change(IPCC), 2021: Summary for Policymakers, Cambridge University Press, 2021, 3—32 |
| [3] |
Climate Action Tracker, Glasgow’s 2030 Credibility Gap: Net Zero’s Lip vice to Climate Action, 2023 |
| [4] |
Nesterenko N., Medeiros⁃Costa I. C., Clatworthy E. B., Cruchade H., Konnov S. V., Dath J. P., Gilson J. P., Mintova S., Natl. Sci. Rev., 2023, 10(9), 50—65 |
| [5] |
He M. Y., Sun Y. H., Han B. X., Angew. Chem. Int. Ed., 2022, 61(15), e202112835 |
| [6] |
Aguilera R. F., Aguilera R., Miner. Econ., 2020, 33(1/2), 73—80 |
| [7] |
Horn R., Schloegl R., Catal. Lett., 2015, 145(1), 23—39 |
| [8] |
Ji M. D., Wang J. L., Int. J. Hydrogen Energy, 2021, 46(78), 38612—38635 |
| [9] |
Bengaard H. S., Norskov J. K., Sehested J., Clausen B. S., Nielsen L. P., Molenbroek A. M., Rostrup⁃Nielsen J. R., J. Catal., 2002, 209(2), 365—384 |
| [10] |
Roh H. S., Eum I. H., Jeong D. W., Renew. Energy, 2012, 42, 212—216 |
| [11] |
Balasubramanian B., Ortiz A. L., Kaytakoglu S., Harrison D. P., Chem. Eng. Sci., 1999, 54(15/16), 3543—3552 |
| [12] |
Wang H., Cui G. Q., Lu H., Li Z. Y., Wang L., Meng H., Li J., Yan H., Yang Y. S., Wei M., Nat. Commun., 2024, 15(1), 3765 |
| [13] |
Zhang X., Xu Y., Liu Y., Niu L., Diao Y., Gao Z., Chen B., Xie J., Bi M., Wang M., Xiao D., Ma D., Shi C., Chem, 2023, 9(1), 102—116 |
| [14] |
Zhang J., Yang T., Rao Q., Gai Z., Li P., Shen Y., Liu M., Pan Y., Jin H., Fuel, 2024, 366, 131344 |
| [15] |
Chen S., Zeng L., Tian H., Li X., Gong J., ACS Catal., 2017, 7(5), 3548—3559 |
| [16] |
Ingham A., Johnson Matthey Technol. Rev., 2017, 61(4), 297—307 |
| [17] |
Ayabe S., Omoto H., Utaka T., Kikuchi R., Sasaki K., Teraoka Y., Eguchi K., Appl. Catal. A: Gen., 2003, 241(1/2), 261—269 |
| [18] |
Cheng Z. X., Wu Q. L., Li J. L., Zhu Q. M., Catal. Today, 1996, 30(1—3), 147—155 |
| [19] |
Buelens L. C., Galvita V. V., Poelman H., Detavernier C., Marin G. B., Science, 2016, 354(6311), 449—452 |
| [20] |
Minutillo M., Perna A., Int. J. Hydrogen Energy, 2010, 35(13), 7012—7020 |
| [21] |
Ling Y., Wang H., Liu M., Wang B., Li S., Zhu X., Shi Y., Xia H., Guo K., Hao Y., Jin H., Energy Environ. Sci., 2022, 15(5), 1861—1871 |
| [22] |
Patlolla S. R., Katsu K., Sharafian A., Wei K. V., Herrera O. E., Mérida W., Renew. Sust. Energ. Rev., 2023, 181, 113323 |
| [23] |
Moghaddam A. L., Hejazi S., Fattahi M., Kibria M. G., Thomson M. J., Aleisa R., Khan M. A., Energy Environ. Sci., 2025, 18(6), 2747—2790 |
| [24] |
Shokrollahi M., Teymouri N., Ashrafi O., Navarri P., Khojasteh⁃Salkuyeh Y., Int. J. Hydrogen Energy, 2024, 66, 337—353 |
| [25] |
Chan Y., Chan Z. P., Lock S. S. M., Yiin C. L., Foong S. T., Wong M. K., Ishak M. A., Quek V. C., Ge S., Lam S. S. L., Chin. Chem. Lett., 2024, 35(8), 109329 |
| [26] |
Chen G., Tu X., Homm G., Weidenkaff A., Nat. Rev. Mater., 2022, 7(5), 333—334 |
| [27] |
Sánchez⁃Bastardo N., Schlögl R., Ruland H., Ind. Eng. Chem. Res., 2021, 60(32), 11855—11881 |
| [28] |
Scheiblehner D., Neuschitzer D., Wibner S., Sprung A., Antrekowitsch H., Int. J. Hydrogen Energy, 2023, 48(16), 6233—6243 |
| [29] |
Upham D. C., Agarwal V., Khechfe A., Snodgrass Z. R., Gordon M. J., Metiu H., McFarland E. W., Science, 2017, 358(6365), 917—920 |
| [30] |
Chen L. N., Song Z. G., Zhang S. C., Chang C. K., Chuang Y. C., Peng X. X., Dun C., Urban J. J., Guo J. H., Chen J. L., Prendergast D., Salmeron M., Somorjai G. A., Su J., Science, 2023, 381(6660), 857—861 |
| [31] |
Pangestu M. R. G., Malaibari Z., Muhammad A., Al⁃Rowaili F. N., Zahid U., Energ. Fuel, 2024, 38(15), 13514—13538 |
| [32] |
Ahn S. Y., Kim K. J., Kim B. J., Hong G. R., Jang W. J., Bae J. W., Park Y. K., Jeon B. H., Roh H. S., Renew. Sust. Energ. Rev., 2023, 186, 113635 |
| [33] |
Salkuyeh Y. K., Saville B. A., MacLean H. L., Int. J. Hydrogen Energy, 2017, 42(30), 18894—18909 |
| [34] |
Ghavam S., Vahdati M., Wilson I. A. G., Styring P., Front. Energy Res., 2021, 9, 580808 |
| [35] |
Luo Y., Shi Y. X., Li W. Y., Ni M., Cai N. S., Int. J. Hydrogen Energy, 2014, 39(20), 10359—10373 |
| [36] |
Sun J., Alam D., Daiyan R., Masood H., Zhang T. Q., Zhou R. W., Cullen P. J., Lovell E. C., Jalili A., Amal R., Energy Environ. Sci., 2021, 14(2), 865—872 |
| [37] |
Yang L. C., Ge X. M., Wan C. X., Yu F., Li Y. B., Renew. Sust. Energ. Rev., 2014, 40, 1133—1152 |
| [38] |
Bozzano G., Manenti F., Prog. Energy Combust. Sci., 2016, 56, 71—105 |
| [39] |
Olah G. A., Angew. Chem. Int. Ed., 2005, 44(18), 2636—2639 |
| [40] |
Filosa C., Gong X., Bavykina A., Chowdhury A. D., Gallo J. M. R., Gascon J., Acc. Chem. Res., 2023, 56(23), 3492—3503 |
| [41] |
Dummer N. F., Willock D. J., He Q., Howard M. J., Lewis R. J., Qi G. D., Taylor S. H., Xu J., Bethell D., Kiely C. J., Hutchings G. J., Chem. Rev., 2023, 123(9), 6359—6411 |
| [42] |
Zakaria Z., Kamarudin S. K., Renew. Sust. Energ. Rev., 2016, 65, 250—261 |
| [43] |
Ravi M., Ranocchiari M., van Bokhoven J. A., Angew. Chem. Int. Ed., 2017, 56(52), 16464—16483 |
| [44] |
Taylor S. H., Hargreaves J. S. J., Hutchings G. J., Joyner R. W., Lembacher C. W., Catal. Today, 1998, 42(3), 217—224 |
| [45] |
Otsuka K., Hatano M., J. Catal., 1987, 108(1), 252—255 |
| [46] |
Shan J. J., Li M. W., Allard L. F., Lee S. S., Maria F. S., Nature, 2017, 551(7682), 605—608 |
| [47] |
Agarwal N., Freakley S. J., McVicker R. U., Althahban S. M., Dimitratos N., He Q., Morgan D. J., Jenkins R. L., Willock D. J., Taylor S. H., Kiely C. J., Hutchings G. J., Science, 2017, 358(6360), 223—226 |
| [48] |
Sushkevich V. L., Palagin D., Ranocchiari M., van Bokhoven J. A., Science, 2017, 356(6337), 523—527 |
| [49] |
Jin Z., Wang L., Zuidema E., Mondal K., Zhang M., Zhang J., Wang C., Meng X., Yang H., Mesters C., Xiao F. S., Science, 2020, 367(6474), 193—197 |
| [50] |
Schwach P., Pan X. L., Bao X. H., Chem. Rev., 2017, 117(13), 8497—8520 |
| [51] |
Gambo Y., Jalil A. A., Triwahyono S., Abdulrasheed A. A., J. Ind. Eng. Chem., 2018, 59, 218—229 |
| [52] |
Keller G. E., Bhasin M. M., J. Catal., 1982, 73(1), 9—19 |
| [53] |
Kondratenko E. V., Schlueter M., Baerns M., Linke D., Holena M., Catal. Sci. Technol., 2015, 5(3), 1668—1677 |
| [54] |
Li S. B., Chin. J. Chem., 2001, 19(1), 16—21 |
| [55] |
Zavyalova U., Holena M., Schloegl R., Baerns M., ChemCatChem, 2011, 3(12), 1935—1947 |
| [56] |
Labinger J. A., Ott K. C., J. Phys. Chem., 1987, 91(11), 2682—2684 |
| [57] |
Tang P., Zhu Q., Wu Z., Ma D., Energy Environ. Sci., 2014, 7(8), 2580—2591 |
| [58] |
Ortiz⁃Bravo C. A., Chagas C. A., Toniolo F. S., J. Nat. Gas Sci. Eng., 2021, 96, 104254 |
| [59] |
Hu J. B., Zhao Y. L., Liu F. W., Chen X. T., Xiao L. P., Zou S. H., Fan J., Mater. Today Sustainability, 2025, 29, 101053 |
| [60] |
Wang J., Liu F., Wu J., Zou S., Fan J., Catal. Sci. Technol., 2023, 13(8), 2493—2499 |
| [61] |
Zou S., Wang J., Liu J., Zhou Q., Pan Y., Yuan W., Hu J., Wang Y., Yang J., Wang Y., Liu J., Ma L., Du Y., Yang B., Fan J., ChemRxiv, 2024, doi: 10.26434/chemrxiv⁃2024⁃rmvt4 |
| [62] |
Guo X., Fang G., Li G., Ma H., Fan H., Yu L., Ma C., Wu X., Deng D., Wei M., Tan D., Si R., Zhang S., Li J., Sun L., Tang Z., Pan X., Bao X., Science, 2014, 344(6184), 616—619 |
| [63] |
Hao J., Schwach P., Fang G., Guo X., Zhang H., Shen H., Huang X., Eggart D., Pan X., Bao X., ACS Catal., 2019, 9(10), 9045—9050 |
| [64] |
Postma R. S., Lefferts L., ChemCatChem, 2021, 13(4), 1157—1160 |
| [65] |
Li J., He Y., Tan L., Zhang P., Peng X., Oruganti A., Yang G., Abe H., Wang Y., Tsubaki N., Nat. Catal., 2018, 1(10), 787—793 |
| [66] |
Friedel R. A., Anderson R. B., J. Am. Chem. Soc., 1950, 72(3), 1212—1215 |
| [67] |
Zhou W., Cheng K., Kang J., Zhou C., Subramanian V., Zhang Q., Wang Y., Chem. Soc. Rev., 2019, 48(12), 3193—3228 |
| [68] |
Galvis H. M. T., de Jong K. P., ACS Catal., 2013, 3(9), 2130—2149 |
| [69] |
Chen X. Q., Deng D. H., Pan X. L., Hu Y. F., Bao X. H., Chem. Commun., 2015, 51(1), 217—220 |
| [70] |
Chang C. D., Silvestri A. J., J. Catal., 1977, 47(2), 249—259 |
| [71] |
Xu S., Zhi Y., Han J., Zhang W., Wu X., Sun T., Wei Y., Liu Z., Adv. Catal., 2017, 61, 37—122 |
| [72] |
Liu Z., Liang J., Curr. Opin. Solid State Mater. Sci., 1999, 4(1), 80—84 |
| [73] |
Zhu Z., Fan M., He M., An B., Chen Y., Xu S., Zhou T., Sheveleva A. M., Kippax⁃Jones M., Shan L., Cheng Y., Cavaye H., Armstrong J., Rudié S., Parker S. F.,Thornley W., Tillotson E., Lindley M., Tian S., Lee S., Fu S., Frogley M. D., Tuna F., Melnnes E., Haigh S., Yang S., Sci. Bull., 2025, 70(5), 694—703 |
| [74] |
Wang Y., Zou S., Nabera A., Chen X., Pan Y., Wei K., Bao Y., Hu J., Zhao Y., Liu C., Liu J., Wang Y., Ren Y., Gonzalo G., Javier P., Fan J., J. Am. Chem. Soc., 2025, 147(9), 7757—7764 |
| [75] |
Xie S., Lin S., Zhang Q., Tian Z., Wang Y., J. Energy Chem., 2018, 27(6), 1629—1636 |
| [76] |
Yentekakis I. V., Jiang Y., Makri M., Vayenas C. G., Stud. Surf. Sci. Catal., 1997, 107, 307—312 |
| [77] |
Liu K., Zhao J., Zhu D., Meng F., Kong F., Tang Y., Catal. Commun., 2017, 96, 23—27 |
| [78] |
Jiang W., Low J., Mao K., Duan D., Chen S., Liu W., Pao C. W., Ma J., Sang S., Shu C., Zhan X., Qi Z., Zhang H., Liu Z., Wu X., Long R., Song L., Xiong Y., J. Am. Chem. Soc., 2021, 143(1), 269—278 |
| [79] |
Kang D., Rahimi N., Gordon M. J., Metiu H., McFarland E. W., Appl. Catal. B, 2019, 254, 659—666 |
| [80] |
Bayat N., Rezaei M., Meshkani F., Int. J. Hydrogen Energy, 2016, 41(12), 5494—5503 |
| [81] |
Al⁃Fatesh A., Barama S., Ibrahim A., Barama A., Khan W., Fakeeha A., Chem. Eng. Commun., 2017, 204(7), 739—749 |
| [82] |
Pudukudy M., Yaakob Z., Jia Q., Takriff M. S., Appl. Surf. Sci., 2019, 467, 236—248 |
| [83] |
Wang I. W., Kutteri D. A., Gao B., Tian H., Hu J., Energ. Fuel., 2019, 33(1), 197—205 |
| [84] |
Pal R. S., Rana S., Sadhu S., Khan T. S., Poddar M. K., Singha R. K., Sarkar S., Sharma R., Bal R., Energy Adv., 2023, 2(1), 180—197 |
| [85] |
Zhang Y., Xu J., Xu X., Xi R., Liu Y., Fang X., Wang X., Catal. Today, 2020, 355, 518—528 |
| [86] |
Kiani D., Sourav S., Baltrusaitis J., Wachs I. E., ACS Catal., 2019, 9(7), 5912—5928 |
| [87] |
Si J., Zhao G., Sun W., Liu J., Guan C., Yang Y., Shi X. R., Lu Y., Angew. Chem. Int. Ed., 2022, 61(18), e202117201 |
| [88] |
Dedov A. G., Loktev A. S., Moiseev I. I., Aboukais A., Lamonier J. F., Filimonov I. N., Appl. Catal. A, 2003, 245(2), 209—220 |
| [89] |
Song J., Sun Y., Ba R., Huang S., Zhao Y., Zhang J., Sun Y., Zhu Y., Nanoscale, 2015, 7(6), 2260—2264 |
| [90] |
Wang P., Zhao G., Liu Y., Lu Y., Appl. Catal. A, 2017, 544, 77—83 |
| [91] |
Zou S., Li Z., Zhou Q., Pan Y., Yuan W., He L., Wang S., Wen W., Liu J., Wang Y., Chin. J. Catal., 2021, 42(7), 1117—1125 |
| [92] |
Silvestri A. J., Abstr. Pap. Am. Chem. Soc., 1981, 181(MAR), 41—INDE |
| [93] |
Liu S., He J., Lu D., Sun J., Chem. Eng. Res. Des., 2020, 154, 182—191 |
| [94] |
v.d. Burgt M. J., van Leeuwen C. J., del'Amico J. J., Sie S. T., Stud. Surf. Sci. Catal., 1988, 36, 473—482 |
| [95] |
Oxidative Coupling of Methane followed by Oligomerization to Liquids. https: //cordis.europa.eu/project/id/228953/reporting |
| [96] |
Wang L. S., Tao L. X., Xie M. S., Xu G. F., Huang J. S., Xu Y. D., Catal. Lett., 1993, 21(1/2), 35—41 |
| [97] |
Huang X., Jiao X., Wang X., Zhao N., J. Fuel Chem. Technol., 2022, 50(1), 44—53 |
| [98] |
Spivey J. J., Hutchings G., Chem. Soc. Rev., 2014, 43(3), 792—803 |
| [99] |
Ali S. S., Shoeb M. A., Ansari K. B., Mesfer M. K., Danish M., Ansari M. Y., Energ. Fuel, 2023, 37(22), 17113—17133 |
| [100] |
Xie J., Fu C., Quesne M. G., Guo J., Wang C., Xiong L., Windle C. D., Gadipelli S., Guo Z. X., Huang W., Nature, 2025, 639, 368—374 |
国家社会科学基金后期资助项目(24FFXB056)
浙江省教育厅科研项目(Y202455057)
国家自然科学基金(92045301)
国家自然科学基金(91845203)
/
| 〈 |
|
〉 |