Pd/Zr-MOFs催化剂中Pd电子密度与粒径对糠醛低温加氢反应路径的影响
王春花 , 侯海洋 , 刘颖雅 , 丁海 , 刘涛 , 和淑文
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (10) : 116 -126.
Pd/Zr-MOFs催化剂中Pd电子密度与粒径对糠醛低温加氢反应路径的影响
Effects of Pd Electronic Density and Particle Size on the Low-temperature Hydrogenation Pathway of Furfural in Pd/Zr-MOFs Catalysts
以一系列相同拓扑结构的Zr基金属有机框架(MOFs)材料为载体, 采用过量浸渍法制备了Pd/UiO-66, Pd/UiO-66-NH2及Pd/UiO-67-bpydc催化剂. 研究了载体中不同含氮配体对Pd颗粒尺寸、 电子密度以及糠醛加氢路径的影响. X射线光电子能谱(XPS)、 CO探针红外光谱(CO-FTIR)及透射电子显微镜(TEM)等表征结果表明, 不同含氮配体与Pd颗粒间存在强度各异的相互作用, 这种相互作用不仅调控了Pd颗粒的尺寸, 还对Pd电子密度产生了显著的影响. 催化反应结果表明, 不同的含氮配体导致催化剂的活性及产物选择性呈现明显差异, 从活性角度看, 金属与不同载体间适度的键合作用有利于提升Pd/Zr-MOFs催化剂的活性, 而过强的相互作用则会抑制其催化活性. 在选择性方面, Pd电子密度是影响糠醛加氢路径选择性的关键因素. 具体而言, UiO-66-NH2中的的氨基氮及UiO-67-bpydc中的联吡啶氮促进了Pd颗粒的分散, 还促进了UiO-66-NH2及 UiO-67-bpydc与Pd颗粒之间的电子转移. 对于电子密度较大的Pd/UiO-67-bpydc及Pd/UiO-66-NH2催化剂, 糠醛优先通过侧链醛基(C=O)进行加氢; 而对于电子密度较小的Pd/UiO-66催化剂, 糠醛则优先通过呋喃环 C=C双键加氢.
Pd/UiO-66, Pd/UiO-66-NH2 and Pd/UiO-67-bpydc catalysts were prepared by the impregnation method using a series of Zr-based MOFs materials with the same topological structure as supports. The primary focus was to investigate the influence of different nitrogen-containing ligands in the supports on the size of Pd particles, the electron density, and the hydrogenation pathway of furfural. The characterization results of X-ray photoelectron spectroscopy(XPS), carbon monoxide probe in situ Fourier transform infrared spectroscopy(CO-FTIR), and transmission electron microscope(TEM) indicate that there are interactions of varying strengths between different N-containing ligands and Pd particles, and this interaction not only regulates the size of Pd particles but also has a significant impact on the electron density of Pd. Catalytic reaction results show that different N-containing ligands result in significant differences in both the activity of the catalyst and the selectivity of the products. From the perspective of activity, an appropriate metal-support interaction between Pd and the different supports enhances the activity of the Pd/Zr-MOFs catalysts, while excessively strong interactions suppress catalytic activity. Regarding selectivity, the electron density of Pd is a key factor affecting the selectivity of the furfural hydrogenation pathway. Specifically, the amino nitrogen in UiO-66-NH2 and the bipyridine nitrogen in UiO-67-bpydc not only promote the dispersion of Pd particles, but also facilitate the electron transfer between UiO-66-NH2, UiO-67-bpydc and Pd particles. For the Pd/UiO-67-bpydc and Pd/UiO-66-NH2 catalysts with higher electron density, the furfural preferentially undergoes hydrogenation through the aldehyde group(C=O) in the side chain, for the Pd/UiO-66 catalyst with lower electron density, the furfural preferentially undergoes hydrogenation through the furan ring C=C double bond.
Pd/Zr-MOF催化剂 / 糠醛加氢 / 反应路径 / Pd电子密度
Pd/Zr-MOF catalyst / Furfural hydrogenation / Reaction pathway / Pd electron density
| [1] |
Zhao K., Wen B., Tang Q., Wang F., Liu X., Xu Q., Yin D., Green Chem., 2024, 26(19), 9957—9992 |
| [2] |
Chen S., Wojcieszak R., Dumeignil F., Marceau E., Royer S., Chem. Rev., 2018, 118(22), 11023 —11117 |
| [3] |
Fang R., Dhakshinamoorthy A., Li Y., Garcia H., Chem. Soc. Rev., 2020, 49, 3638 |
| [4] |
Cheng S., Lei Q., Deng C., Liang L., Chen Y., Meng H., Lei W., Chen H., Green Chem., 2024, 26(12), 7132—7139 |
| [5] |
Qian M. D., Luo W., Ni Z. M., Xia S. J., Xue J. L., Jiang J. H., Chem. J. Chinese Universities, 2017, 38(9), 1611—1618 |
| [6] |
钱梦丹, 罗伟, 倪哲明, 夏盛杰 薛继龙, 蒋军辉. 高等学校化学学报, 2017, 38(9), 1611—1618 |
| [7] |
Yang Y., Wang Y., Li S., Shen X., Chen B., Liu H., Han B., Green Chem., 2020, 22(15), 4937—4942 |
| [8] |
Li D. H., An M. J., Zhao L. L., Ma J. J., Spec. Petrochem., 2022, 39(5), 65—69 |
| [9] |
李丹辉, 安梦洁, 赵丽丽, 马晶军. 精细石油化工, 2022, 39(5), 65—69 |
| [10] |
Gu J., Zhang H., Guo M., Hu Y., J. Catal., 2025, 446, 116083 |
| [11] |
Zhang Z., Liu R., Huang L., Liu P., J. Catal., 2024, 440, 115824 |
| [12] |
Shanmugaraj K., Bedoya S., González-Vera D., Mangalaraja R. V., Vigneshwaran S., Noé Díaz de León J., Herrera C., Al⁃Sehemi A. G., Campos C. H., J. Environ. Chem. Eng., 2024, 12(5), 113442 |
| [13] |
Alsharif H., Conway M. B., Morgan D. J., Davies T. H., Taylor S. H., Sankar M., RSC Sustainability, 2024, 2, 3888 |
| [14] |
Gao R., Li X., Guo L., Tong Z., Deng Q., Wang J., Zeng Z., Zou J. J., Deng S., Appl. Catal. A: Gen., 2021, 612, 117985 |
| [15] |
Deng Q., Gao R., Li X., Wang J., Zeng Z., Zou J. J., Deng S., ACS Catal., 2020, 10(13), 7355—7366 |
| [16] |
Deng Y., Wang S., Feng H. S., Zhang X., Chem. J. Chinese Universities, 2023, 44(2), 20220486 |
| [17] |
邓园, 王思, 丰海松, 张欣. 高等学校化学学报, 2023, 44(2), 20220486 |
| [18] |
Campisi S., Chan-Thaw C. E., Chinchilla L. E., Chutia A., Botton G. A., Mohammed K. M. H., Dimitratos N., Wells P., Villa A., ACS Catal., 2020, 10(10), 5483—5492 |
| [19] |
Kosydar R., Kołodziej M., Lalik E., Gurgul J., Mordarski G., Drelinkiewicz A., Int. J. Hydrogen Energy, 2022, 47(4), 2347—2365 |
| [20] |
Li C., Xu G., Liu X., Zhang Y., Fu Y., Ind. Eng. Chem. Res., 2017, 56(31), 8843—8849 |
| [21] |
Zhao X., Wang Y., Zhai Z., Zhuang C., Tian D., Guo H., Zou X., Liu T. X., ACS Appl. Nano Mater., 2023, 6(10), 8315—8324 |
| [22] |
Zhu L., Xia X., Yu H., Wang Y., Song H., Li C., Li F., ChemistrySelect, 2023, 8(30), 202301155 |
| [23] |
Morilov D. P., Timofeev K. L., Golubovskaya A. G., Stonkus A., Kharlamova T. S., Microporous Mesoporous Mater., 2025, 384, 113432 |
| [24] |
Chen J., Liu R., Guo Y., Chen L., Gao H., ACS Catal., 2015, 5(2), 722—733 |
| [25] |
Chen D., Yang W., Jiao L., Li L., Yu S. H., Jiang H. L., Adv. Mater., 2020, 32(30), 2000041 |
| [26] |
Sheng B. S., Li C., Liu Y. Y., Wang A. J., Wang Y., Zhang J., Liu W. X., Chem. J. Chinese Universities, 2019, 40(7), 1365—1373 |
| [27] |
盛炳琛, 李从, 刘颖雅, 王安杰, 王瑶, 张箭, 刘伟旭. 高等学校化学学报, 2019, 40(7), 1365—1373 |
| [28] |
Wang H., Liu X., Yang W., Mao G., Meng Z., Wu Z., Jiang H. L., J. Am. Chem. Soc., 2022, 144(48), 22008—22017 |
| [29] |
Liu Z., Wang C., Yang P., Wang W., Gao H., An G., Liu S., Chen J., Guo T., Xu X., Wang G., Chin. J. Catal., 2024, 64, 112—122 |
| [30] |
Wang W., Zeng D., Cui B., Zhang C., Zhang L., Wang W., Fuel, 2025, 390, 134760 |
| [31] |
Han Y., Liu M., Li K., Zuo Y., Wei Y., Xu S., Zhang G., Song C., Zhang Z., Guo X., CrystEngComm, 2015, 17, 6434—6440 |
| [32] |
Fei H., Cohen S. M., Chem. Commun., 2014, 50(37), 4810—4812 |
| [33] |
Zhang F., Zheng S., Xiao Q., Zhong Y., Zhu W., Lin A., El⁃Shall M. S., Green Chem., 2016, 18(9), 2900—2908 |
| [34] |
Cavka J. H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., Lillerud K. P., J. Am. Chem. Soc., 2008, 130(42), 13850—13851 |
| [35] |
Wang H., Qin B., Cai J., Wu Y., Zhao C., Bai X., Chen L., Fan Y. Z., Zhang M., Liu J., ACS Catal., 2024, 14(24), 18542—18549 |
| [36] |
Wang J., Liu X., Li C., Yuan M., Zhang B., Zhu J., Ma Y., J. Photochem. Photobiol, A, 2020, 401, 112795 |
| [37] |
Zhang K., Xi Z., Wu Z., Lu J., Huang X., ACS Sustainable Chem. Eng., 2021, 9(37), 12623—12633 |
| [38] |
He H., Liu X., Zhao B., Zhou L., Zhou X., Wang C., Zhang J., Zhang Y., Wang L., CrystEngComm, 2024, 26(41), 5916—5932 |
| [39] |
Zhao M., Deng K., He L., Liu Y., Li G., Zhao H., Tang Z., J. Am. Chem. Soc., 2014, 136(5), 1738—1741 |
| [40] |
Guo D., Jiang K., Gan H., Ren Y., Long J., Li Y., Yin B., Angew. Chem. Int. Ed., 2023, 62(39), e202304662 |
| [41] |
Wang B., Gao M., Uosaki K., Taketsugu T., Phys. Chem. Chem. Phys., 2020, 22(21), 12200—12208 |
| [42] |
Wang C., Yu Z., Yang Y., Sun Z., Wang Y., Shi C., Liu Y. Y., Wang A., Leus K., Voort P. V. D., Molecules, 2021, 26(19), 5736 |
| [43] |
Wu Y. X., Liu C. B., Zan X. Y., Zhang C. Y., Tao S. Q., Li Z. W., Wang K. J., Liu Y. J., Huang W., Chem. J. Chinese Universities, 2024, 45(9), 20240125 |
| [44] |
吴怡枭, 刘超波, 昝雪玉, 张超宇, 陶诗琪, 李智雯, 王柯静, 刘勇军, 黄伟. 高等学校化学学报, 2024, 45(9), 20240125 |
| [45] |
Hu B., Warczinski L., Li X., Lu M., Bitzer J., Heidelmann M., Eckhard T., Fu Q., Schulwitz J., Merko M., Li M., Kleist W., Hättig C., Muhler M., Peng B., Angew. Chem. Int. Ed., 2021, 60(12), 6807—6815 |
| [46] |
Mou D., Wu H. Y., Zhang N. Q., An Z. K., He X., Zhang F. Q., Zhao L., Chen H., Fang W., Du X., Wang D. H., Li W. X., Chem. J. Chinese Universities, 2024, 45(3), 20230468 |
| [47] |
牟迪, 吴海洋, 张楠琦, 安兆坤, 何漩, 张富青, 赵雷, 陈辉, 方伟, 杜星, 王大珩, 李薇馨. 高等学校化学学报, 2024, 45(3), 20230468 |
| [48] |
Dong C., Li X., Wang A., Chen Y., Catal. Today, 2017, 297, 124—130 |
| [49] |
Liu R., Wang C., Yan Y., Wang R., Chen G., ACS Catal., 2024, 14(6), 3955—3965 |
| [50] |
Kosydar R., Lalik E., Gurgul J., Szumełda T., Drelinkiewwicz A., Int. J. Hydrogen Energy, 2024, 60, 293—307 |
| [51] |
Yang K., Wang R., Xu D., Ma X., Ding D., Zhang M., Zhang L., Bai Z., Zhu Z., Lü H., J. Catal., 2023, 425, 170—180 |
| [52] |
Stakheev A. Y., Kustov L. M., Appl. Catal. A: Gen., 1999, 188(1), 3—35 |
| [53] |
Rogers S. M., Catlow C. R. A., Chan⁃Thaw C. E., Chutia A., Jian N., Palmer R. E., Perdjon M., Thetford A., Dimitratos N., Villa A., Wells P. P., ACS Catal., 2017, 7(4), 2266—2274 |
| [54] |
Bhogeswararao S., Srinivas D., J. Catal., 2012, 285(1), 31—40 |
| [55] |
Šivec R., Huš M., Likozar B., Grilc M., Chem. Eng. J., 2022, 436, 135070 |
| [56] |
Gao Y., Zhao H., Liang J., Liu C., Yuan H., Zheng Y., Li H., Wang F., Dong Z., Chem. Eng. J., 2025, 503, 158045 |
| [57] |
Wang T., Wang J., Xi Y., Hu B., Li F., Chem. Res. Chinese Universities, 2024, 40(1), 55—63 |
/
| 〈 |
|
〉 |