ZIF-67衍生空心花状Ni0.3Co2.7S/MoS2复合催化剂的制备及电解水制氢应用
李栋 , 濮雪 , 邓力 , 吴琪琳 , 巨安奇
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (09) : 122 -130.
ZIF-67衍生空心花状Ni0.3Co2.7S/MoS2复合催化剂的制备及电解水制氢应用
Fabrication of ZIF-67-Derived Hollow Flower-like Ni0.3Co2.7S/MoS2 Composite Catalysts for Hydrogen Production via Water Electrolysis
过渡金属硫化物具有可媲美贵金属基催化剂的性能和价格低廉的优势, 但较差的本征活性阻碍了其大规模应用. 本文以NiCo ZIF-67为前驱体, 通过柯肯达尔效应驱动硫诱导形成具有空心结构的Ni0.3Co2.7S/MoS2花状复合催化剂. 复合催化剂的空心框架通过有效锚定MoS2纳米片协同增强循环稳定性, 同时其扩大的层间距可促进电解质充分渗透并优化电荷传输路径. Ni0.3Co2.7S/MoS2花状复合催化剂展现出优异的电催化析氢性能, 在10 mA/cm2电流密度下过电势仅为150 mV, 且通过恒电流稳定性测试(20 mA/cm2持续70 h)和2000次循环伏安测试后, 过电势仅衰减7 mV, 凸显其高活性和长效稳定性. 本研究为设计高效稳定的TMS电解水催化剂提供了新思路, 对推进绿氢技术的发展具有重要科学价值.
Hydrogen energy, as one of the most promising clean energy vectors in the 21st century, has positioned its efficient production technology as a critical pathway for global energy transition. However, large-scale implementation of water electrolysis remains constrained by the high overpotentials of hydrogen evolution reaction(HER) and oxygen evolution reaction(OER), resulting in inefficient energy conversion. Although noble-metal-based catalysts(Pt, IrO2/RuO2) exhibit exceptional catalytic activity, their scarcity and prohibitive costs severely restrict industrial deployment. Transition metal sulfides(TMS) have emerged as competitive alternatives to noble-metal catalysts due to their cost-effectiveness and tunable electronic structures, yet their inferior intrinsic activity hinders large-scale applications. Metal-organic frameworks(MOFs), featuring ordered porous architectures, high specific surface areas, and uniformly distributed metal nodes, can be converted through controlled sulfurization into cobalt-based sulfides with hierarchical porosity. This conversion not only preserves the three-dimensional skeletal advantages of the precursors but also effectively modulates the density of states at metal centers via sulfur-atom doping. In this work, NiCo ZIF-67 is employed as a precursor to construct a hollow-structured Ni0.3Co2.7S/MoS2 flower-like composite catalyst through sulfur-induced Kirkendall effect-driven synthesis. The hollow framework of the composite synergistically enhances cycling stability by effectively anchoring MoS2 nanosheets, while its expanded interlayer spacing facilitates sufficient electrolyte infiltration and optimizes charge transfer pathways. The Ni0.3Co2.7S/MoS2 catalyst demonstrates exceptional electrocatalytic hydrogen evolution performance, achieving a low overpotential of 150 mV at 10 mA/cm2. Remarkably, after galvanostatic stability testing(80 h at 10 mA/cm2) and 2000 cyclic voltammetry cycles, the overpotential increases by only 7 mV, highlighting its superior activity and long-term durability. This study provides a novel strategy for designing efficient and stable TMS-based electrocatalysts for water splitting, offering significant scientific value for advancing green hydrogen technologies.
Hydrogen evolution reaction / Transition metal sulfides / Structural engineering / Hydrothermal synthesis
| [1] |
Chi L. P., Niu Z. Z., Liao J., Tang K. B., Gao M. R., Chem. J. Chinese Universities, 2023, 44(5), 20220740 |
| [2] |
池丽萍, 牛壮壮, 廖洁, 唐凯斌, 高敏锐. 高等学校化学学报, 2023, 44(5), 20220740 |
| [3] |
Peng M., Ge Y. Z., Gao R., Yang J., Li A., Xie Z. H., Yu Q. L., Zhang J., Asakura H., Zhang H., Liu Z., Zhang Q., Deng J., Zhou J. H., Zhou W., Huchings G. J., Ma D., Science, 2025, 387(6735), 769—775 |
| [4] |
Zhang F. F., Hong S. H., Qiao R. X., Huang W. H., Tang Z., Tang J. Y., Pao C. W., Yeh M. H., Dai J., Chen Y., Lu J., Hu Z. W., Gong F., Zhu Y. L., Wang H. T., ACS Nano, 2025, 19(11), 11176—11186 |
| [5] |
Lin J. W., Wang X., Zhao Z. Y., Chen D. L., Liu R. M., Ye Z. Z., Lu B., Hou Y., Lu J. G., Carbon Energy, 2024, 6(11), 555—586 |
| [6] |
Pomerantseva E., Bonaccorso F., Feng X. L., Cui Y., Gogotsi Y., Science, 2019, 366(6468), 969—981 |
| [7] |
Yuan Y. L., Fang H. L., Chen K., Huang J. H., Chen J. X., Lu Z. W.,Wang H. B., Zhao Z. X., Chen W. X., Wen Z. H., Adv. Mater., 2025, 37(18), 2501607 |
| [8] |
Chen G. Z., Chen W., Lu R. H., Ma C. Zhang Z. D., Huang Z. Y., Weng J. N., Wang Z. Y., Han Y. H., Huang W., J. Am. Chem. Soc., 2023, 145(40), 22069—22078 |
| [9] |
Su L. X., Zhang S. K., Cui C. X., Zhou S. N., Pang H., Adv. Mater., 2025, 37(4), 2414628 |
| [10] |
Duan X., Zhang H., Chem. Rev., 2024, 124(19), 10619—10622 |
| [11] |
Shi C, Zhou J., Boda M. A., Zhao K. F., Yang Z. Q., Yuan D. W., Yi Z. G., J. Mater. Chem. A, 2025, 13(6), 4538—4549 |
| [12] |
Huang J. J., Mu L., OU Y. Y., Zhao G., Huang J. Z., Wang X., Zhang B. J., CrystEngComm, 2024, 26(33), 4478—4488 |
| [13] |
Yang Z., Chen H. B., Bei S. Y., Bao K. Y., Zhang C. Y., Xiang M., Yu C. B., Dong S., Qin H. F., Small, 2024, 20(24), 2310286 |
| [14] |
Jia Y., Zhang Y. C., Xu H. Q., Li J., Gao M., Yang X. T., ACS Catal., 2024, 14(7), 4601—4637 |
| [15] |
Chen X. Y., Yao J. S., Geng J. M., Zhou M. M., China Molybdenum Ind., 2023, 47(6), 1—9 |
| [16] |
陈宇欣, 姚金实, 葛静敏, 周明明. 中国钼业, 2023, 47(6), 1—9 |
| [17] |
Ali Shan S., Xu L., Sayyar R., Bian T., Liu Z. Y., Yuan A. H., Shen X. P., Khan I., Tahir A. A., Ullah H., Chem. Eng. J., 2022, 428, 132126 |
| [18] |
Zhang G. G., Feng W. C., Du G. Y., Zhang Y., Yang Y., Xu D., Wang T. Y., Chen H. Y., Xue H. G., Shakouri M., Pang H., Adv. Mater., 2025, 37(26), 2503814 |
| [19] |
An B., Bian R. C., Dong J. P., Liu W. L., Su H., Li N., Gao Y. Q., Ge L., Chem. Eng. J., 2024, 485, 149903 |
| [20] |
Shi M. J., Sultanta F., Qin X. J., Zhang P., Qian K. C., Wei T., Duan Y., Li T. T., Bai J. M., Li R. H., Appl. Catal. B: Environ. Energy, 2025, 371, 125210 |
| [21] |
Su L. X., Zhang S. K., Wu H., Zhou S. N., Cui C. X., Pang H., Nano Energy, 2024, 130, 110177 |
| [22] |
Yao C., Wang Q. Q., Peng C. Y., Wang R. C., Liu J. L., Tsidaeva N., Wang W., Chem. Eng. J., 2024, 479, 147924 |
| [23] |
Lu M, Y, Zhao X., Zhang S. F., Jian H. X., Wang M., Lu T. B., Sci. China Mater., 2024, 67(6), 1882—1890 |
| [24] |
Liu W. L., Teng Z. Y., AN B., Dong J. P., Li N., Gao Y. Q., Ge L., Chem. Eng. J., 2025, 504, 158932 |
| [25] |
Li X. Y., Chen X., Li M., Wei H. R., Yang X. M., Ye S. H., Li L. W., Chen J., Ren X. Z., Ouyang X. P., Liu J. H., Meng X. T., Qiu J. S., Xiao B. W., Zhang Q. L., Hu J. T., Nano⁃Micro Lett., 2025, 17(1), 177—208 |
| [26] |
Yang C. G., Huang R., Wang D. E., Tian Z. J., Chem. Ind. Eng. Prog., 2023, 43(1), 465—472 |
| [27] |
杨成功, 黄蓉, 王冬娥, 田志坚. 化工进展, 2023, 43(1), 465—472 |
| [28] |
Zhang T., Hang L. F., Liu Q. Y., Tao S., Bao H. M., Fan H. J., Adv. Mater., 2024, 36(36), 2405386 |
| [29] |
Yan W. Q., Xian J. L., Zhang S. N., Zhang J. R., Liu K. S., Yang J. L., Tao F., Liu R. P., Liu Q., Yang P. H., Adv. Sci., 2025, 12(26), 2502834 |
| [30] |
Li M., Li H., Fan H. F., Liu Q. F., Yan Z., Wang A. Q., Yang B., Wang E., Nat. Commun., 2024, 15(1), 6154—6163 |
| [31] |
Xu Z. Y., Chen Q., Chen Q. X., Wang P., Wang J. X., Guo C., Qiu X. Y., Han X., Hao J. H., J. Mater. Chem. A, 2022, 10(45), 24137—24146 |
| [32] |
Zhang Y. C., Yang T. R., Li J., Zhang Q., Li B. Z., Gao M., Adv. Funct. Mater., 2022, 33(3), 2210939 |
| [33] |
Jin H., Zhang Y., Cao Z. W., Liu J., Ye S., Adv. Mater., 2025, doi: 10.1002/adma.202502977 |
| [34] |
Li R. S., Miao Z. P., Li J., Tian X. L., Chem. J. Chinese Universities, 2023, 44(5), 20220730 |
| [35] |
李瑞松, 苗政培, 李静, 田新龙. 高等学校化学学报, 2023, 44(5), 20220730 |
| [36] |
Shi Y., Zhang D., Miao H. F., Wu X. K., Wang Z. C., Zhan T. R., Lai J. P., Wang L., Sci. China Chem., 2022, 65(9), 1829—1837 |
| [37] |
Zhao L., Liang S. J., Zhang L., Huang H. L., Zhang Q. H., Ge W. Y., Ting S. W., Tan T., Huang L. B., An Q., Small, 2024, 20(40), e2401537 |
国家重点研发计划项目(2024YFB3712800)
国家重点研发计划项目(2023YFB3711500)
上海产业协同创新计划项目(XTCX-KJ-2023-53-2)
中央高校基本科研业务费专项资金(CUSF-DH-T-2023006)
/
| 〈 |
|
〉 |