球形二氧化硅微粒表面特性调控对电子封装用环氧树脂复合材料性能的影响
张丽丽 , 胡海军 , 李厚文 , 聂兴成 , 李斌 , 张海琳 , 胡乔巨 , 郑德州 , 张国庆 , 井金峰 , 刘文星 , 高长有
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (10) : 138 -144.
球形二氧化硅微粒表面特性调控对电子封装用环氧树脂复合材料性能的影响
Effects of Surface Modification Strategies of Spherical Silica Particles on Properties of Epoxy Resin Composites for Electronic Packaging
系统研究了硅烷偶联剂(SCA)界面改性对二氧化硅微粒/环氧树脂复合材料性能的影响. 通过表面能谱分析验证了硅烷偶联剂在二氧化硅微粒表面的成功接枝, 并制备了高填料含量(质量分数, 50%)的环氧树脂基封装膜, 对比了SiO2改性前后所得复合材料的综合性能. 研究结果表明: 由于环氧基团参与树脂交联反应, γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷(KH-560)显著提升了界面结合强度, 对应复合材料的玻璃化转变温度(170.38 ℃)、 导热系数(0.15 W/mK)及拉伸强度(102.79 MPa)均最高; 由于苯环的疏水性与共轭效应, N-苯 基-3-氨基丙基三甲氧基硅烷(KBM-573)赋予复合材料最大的水接触角(114.9°), 但力学性能略低; 由于氨基极性, γ-氨丙基三甲氧基硅烷(KH-540)改性体系导致材料介电性能与疏水性改善有限. 研究结果表明, 改性二氧化硅微粒对“力学-热学-电学”性能具有协同作用, 为电子封装材料的性能定向优化提供了理论依据.
The effect of silane coupling agent(SCA) interfacial modification on the properties of silica particles/ epoxy composites was systematically investigated to address the performance bottlenecks of epoxy resin-based electronic packaging materials in terms of high thermal conductivity, low dielectric loss, and moisture and thermal stability. The successful grafting of silane coupling agents onto the silica particle surface was verified by surface energy spectroscopy analysis, and epoxy resin-based packaging films with high filler content(50%, mass fraction) were prepared to compare the overall performance of the composites before and after modification. The incorporation of γ-glycidyloxypropyltrimethoxysilane(KH-560) enhanced the interfacial bonding strength of resin through the participation of epoxy groups in the cross-linking reaction. The resultant composites exhibited an optimal glass transition temperature of 170.38 ℃, a thermal conductivity of 0.15 W/mK, and a tensile strength of 102.79 MPa. The resin prepared by using N-phenyl-3-aminopropyltrimethoxysilane(KBM-573)-modified silica particles exhibited a water contact angle of 114.9° and slightly lower mechanical properties due to the hydrophobicity of the benzene ring and conjugation effect. The γ-aminopropyltrimethoxysilane(KH-540)-modified system demonstrated limited improvement in dielectric properties and hydrophobicity due to the amine polarity. The present study elucidated the synergistic effect of modified silica particles on the mechanical, thermal, and electrical properties. This finding provides a theoretical basis for the targeted optimization of electronic packaging materials.
硅烷偶联剂 / 二氧化硅微粒改性 / 电子封装 / 环氧树脂 / 介电损耗
Silane coupling agent / Silica particle modification / Electronic packaging / Epoxy resin / Dielectric loss
| [1] |
Chen X. W., Jiang T., Li W. G., Mater. Mech. Eng., 2024, 48(12), 1—8 |
| [2] |
陈小文, 姜涛, 李文戈. 机械工程材料, 2024, 48(12), 1—8 |
| [3] |
Li Y., Sun G., Zhou Y., Liu G., Wang J., Han S., Prog. Org. Coating, 2022, 172, 107103 |
| [4] |
Wu G., Qi S., Tian G., Wu D., Eur. Polym. J., 2023, 195, 112249 |
| [5] |
Zhao C., Li Y., Liu Y., Xie H., Yu W., Adv. Compos. Hybrid Mater., 2022, 6(1), 1—26 |
| [6] |
You Y., Zhang B., Tao S., Liang Z., Tang B., Zhou R., Yuan D., Micromachines(Basel), 2021, 12(3), 265 |
| [7] |
Zhang G. P., Tian R., Zhang X., Ding X., Wang Y., Xiao C., Zheng K., Liu X., Chen L., Tian X., Compos. Part B: Eng., 2022, 232, 109611 |
| [8] |
He Y., Kabiri M., J. Therm. Anal. Calorim., 2021, 147(10), 5667—5675 |
| [9] |
Wen Y., Chen C., Ye Y., Xue Z., Liu H., Zhou X., Zhang Y., Li D., Xie X., Mai Y. W., Adv. Mater., 2022, 34(52), e2201023 |
| [10] |
Li R., Yang X., Li J., Shen Y., Zhang L., Lu R., Wang C., Zheng X., Chen H., Zhang T., Mater. Today Phys., 2022, 22, 100594 |
| [11] |
Wan Y. J., Li G., Yao Y. M., Zeng X. L., Zhu P. L., Sun R., Compos. Commun., 2020, 19, 154—167 |
| [12] |
Guo Q., Li G., Zhu P., Xu Z., Zhao T., Sun R., Wong C. P., Compos. Part B: Eng., 2022, 232, 110214 |
| [13] |
Bian X., Tuo R., Yang W., Zhang Y., Xie Q., Zha J., Lin J., He S., Polymers(Basel), 2019, 11(10), 1548 |
| [14] |
Zhou X., Xu J., Wu M., Gao J., Zhang J., Zhang Q., Shi Z., Wang B., Xu C., Yang J., Compos. Part A: Appl. Sci. Manuf., 2023, 170, 107538 |
| [15] |
Du X., Kong H., Xu Q., Li B., Yu M., Li Z., Polym. Compos., 2022, 43(4), 2103—2114 |
| [16] |
Meng C. C., Huang M., Li Y. C., Chem. Res. Chinese Universities, 2023, 39(4), 697—704 |
| [17] |
Zhou Y., Liu F., Wang H., Polym. Compos., 2015, 38(4), 803—813 |
| [18] |
Wei L. L., Fan Y. Q., Lin H. F., Che S. A., Chem. Res. Chinese Universities, 2024, 40(6), 1220—1226 |
| [19] |
Tian F., Zhang L., Zhang J., Xiao P., Compos. Part B: Eng., 2017, 114, 93—100 |
| [20] |
Kango S., Kalia S., Celli A., Njuguna J., Habibi Y., Kumar R., Prog. Polym. Sci., 2013, 38(8), 1232—1361 |
| [21] |
Jin Z., Han Z., Chang C., Njuguna J., Habibi Y., Kumar R., Compos. Sci. Technol., 2022, 228, 109660 |
| [22] |
Zhang J. Y., Xu W. B., Zhou Z. F., Ma H. H., Ren F. M., Polym. Mater. Sci. Engin., 2020, 36(9), 111—114 |
| [23] |
张建英, 徐卫兵, 周正发, 马海红, 任凤梅. 高分子材料科学与工程, 2020, 36(9), 111—114 |
| [24] |
Wang D., Yu M., Wang Y., Yao Z., Xia A., Li L., Wang D., J. Appl. Polym. Sci., 2024, 141(24), e55507 |
| [25] |
Tang G., Tao Y., Deng D., Zhang D. X., Zhang S. H., Liu X. Y., Wu Q., Shen H. F., Sun J. J., Chem. J. Chinese Universities, 2024, 45(4), 20230494 |
| [26] |
唐刚, 陶熠, 邓丹, 张冬欣, 张诗华, 刘秀玉, 伍强, 沈海峰, 孙俊杰. 高等学校化学学报, 2024, 45(4), 20230494 |
| [27] |
Amirova L. M., Andrianova K. A., Gaifutdinov A. M., Amirov R. R., J. Non⁃Cryst. Solids, 2024, 646, 123261 |
| [28] |
Qian C. G., Tan Q., Li C. Q., Zheng S. L., Sun Z. M., China Powder Sci. Technol., 2022, 28(5), 1—10 |
| [29] |
钱晨光, 谭琦, 李春全, 郑水林, 孙志明. 中国粉体技术, 2022, 28(5), 1—10 |
| [30] |
Cheng H. C., Tai L. C., Liu Y. C., Mater., 2021, 14(17), 4816 |
| [31] |
Chuang W. C., Chen W. L., Mater., 2022, 15(1), 323 |
| [32] |
Hu Y., Chen C., Wen Y., Xue Z., Zhou X., Shi D., Hu G. H., Xie X., Compos. Sci. Technol., 2021, 209, 108760 |
| [33] |
Ding S., Fang Z., Yu Z., Wang Q., ACS Omega, 2023, 8, 32907—32916 |
| [34] |
Huangfu M. G., Li Y. D., Zhang Y., Wu H., Zhi X. X., Wu X., Liu J. G., Insul. Mater., 2020, 53(8), 1—9 |
| [35] |
皇甫梦鸽, 李一丹, 张燕, 吴昊, 职欣心, 武晓, 刘金刚. 绝缘材料, 2020, 53(8), 1—9 |
| [36] |
Nakamura T., Tabuchi H., Hirai T., Fujii S., Nakamura Y., J. Appl. Polym. Sci., 2020, 137(17), 48615 |
浙江省自然科学基金(ZCLMS25B0203)
/
| 〈 |
|
〉 |