蛇床子素肟醚衍生物的合成与抗菌活性
Synthesis and Antibacterial Activities of Osthole Oxime Ether Derivatives
在前期研究的基础上, 运用骨架跃迁原理, 对抗革兰氏阳性菌活性化合物A进行结构优化, 设计合成了18个蛇床子素肟醚衍生物, 经1H NMR、 13C NMR和元素分析确证其结构. 抗菌活性测试结果显示, 该类化合物对金黄色葡萄球菌(S. aureus)和大肠杆菌(E. coli)的活性不显著, 但其对脆弱拟杆菌(B. fragilis)和厌氧消化链球菌(P. anaerobius)有较好的抑制作用, 尤以化合物5d和5g最为显著, 对B. fragilis的最小抑菌浓度(MIC)分别为 1 和2 μg/mL, 与对照药甲硝唑相当, 可作为先导化合物进行深入研究.
Based on previous research, the structure of antibacterial active compound A were optimized using the scaffold hopping principle. Eighteen osthole oxime ether derivatives were designed and synthesized, and confirmed by means of 1H NMR, 13C NMR and elemental analysis. The antibacterial activities test results revealed that these compounds had insignificant activity against S. aureus and E. coli. However, they unexpectedly exhibited good inhibitory effects against B. fragilis and P. anaerobius. Notably, the compounds 5d and 5g demonstrated the most significant activity, with minimum inhibitory concentrations(MIC) of 1 μg/mL and 2 μg/mL against B. fragilis, respectively. Its antibacterial activities are comparable to the control drug metronidazole, which will be extensively studied as novel antibacterial lead compounds.
Osthole derivatives / Oxime ether / Synthesis / Antibacterial activity
| [1] |
Van Goethem W. M., Marasco R., Hong P. Y., Daffonchio D., Microb. Biotechnol., 2024, 17(3), e14430 |
| [2] |
Shao W. H., Hu X., Shang J., Lin F., Jin L. M., Quan C. S., Zhang Y. M., Li J., Chem. J. Chinese Universities, 2022, 43(10), 20220132 |
| [3] |
邵文惠, 胡欣, 尚静, 林峰, 金黎明, 权春善, 张艳梅, 李军. 高等学校化学学报, 2022, 43(10), 20220132 |
| [4] |
Sun J., Song S. S., Guo C. Y., Liu L. Q., Sun M. Z., Kuang H., Xu C. L., Guo L. L., Chem. Res. Chinese Universities, 2024, 40(6), 1134—1140 |
| [5] |
Xu D. J., He L., Zeng F. D., Liu B., Ma J. L., Han D. M., Yang Q. B., Du J. S., Chem. Res. Chinese Universities, 2024, 40(6), 1050—1059 |
| [6] |
Wright G. D., Nat. Prod. Rep., 2017, 34(7), 694—701 |
| [7] |
Chen W., Lan Y. X., Jin Y. X., Chen Y., Wu R., Chu C. W., Gao Y. F., Chem. J. Chinese Universities, 2023, 44(10), 20230179 |
| [8] |
陈伟, 兰雨欣, 金彦西, 陈阳, 吴润, 储承文, 高焉凤. 高等学校化学学报, 2023, 44(10), 20230179 |
| [9] |
Chou S. Y., Hsu C. S., Wang K. T., Wang M. C., Wang C. C., Phytother. Res., 2007, 21(3), 226—230 |
| [10] |
Shan X. J., Lv M., Wang J. R., Qin Y. J., Xu H., Ind. Crop. Prod., 2022, 182, 114855 |
| [11] |
Joshi P., Singh S., Wani A., Sharma S., Jain S. K., Singh B., Gupta B. D., Satti N. K., Koul S., Khan I. A., Kumar A., Bharate S. B., Vishwakarma R. A., MedChemComm, 2014, 5(10), 1540—1547 |
| [12] |
Hao M., Lv M., Zhou L., Li H. J., Xu J. W., Xu H., J. Agric. Food Chem., 2022, 70(30), 9337—9345 |
| [13] |
Ren Z. L., Fang S. S., Xu J. W., Ding H. X., Xu H., Lv M., Chin. J. Pestic. Sci., 2023, 25(6), 1250—1260 |
| [14] |
任自立, 方珊珊, 徐建伟, 丁海霞, 徐晖, 吕敏. 农药学学报, 2023, 25(6), 1250—1260 |
| [15] |
Singh G., Singh M. K., Current Bioactive Compounds, 2023, 19(8), 30—44 |
| [16] |
Yang R. G., Xue Z. H., Li X. H., Xu T., Zhong Y., Hu S. L., Qin S. S., Guo Y., Eur. J. Med. Chem., 2024, 271, 116449 |
| [17] |
Yang J. Q., Wu X. J., Zhou X. R., Deng L., Yang H., Chin. J. Appl. Chem., 2021, 38(8), 917—922 |
| [18] |
杨家强, 吴学姣, 周绪容, 邓玲, 杨红. 应用化学, 2021, 38(8), 917—922 |
| [19] |
Yang J. Q., Wu X. J., Lu Z. C., Chen Y. M., She H. X., Liu H. J., Chin. J. Org. Chem., 2024, 44(11), 3541—3549 |
| [20] |
杨家强, 吴学娇, 卢子聪, 陈阳密, 佘慧娴, 刘海军. 有机化学, 2024, 44(11), 3541—3549 |
| [21] |
Yang J. Q., Wu X. J., Lu Z. C., Chen Y. M., She H. X., Liu O. L., Chem. J. Chinese Universities, 2024, 45(7), 20240124 |
| [22] |
杨家强, 吴学娇, 卢子聪, 陈阳密, 佘慧娴, 刘讴灵. 高等学校化学学报, 2024, 45(7), 20240124 |
| [23] |
Yang J. Q., Zhou X. R., Chen Y. M., She H. X., Chin. J. Org. Chem., 2025, 45(4), 1306—1314 |
| [24] |
杨家强, 周绪容, 陈阳密, 佘慧娴. 有机化学, 2025, 45(4), 1306—1314 |
| [25] |
Kosmalski T., Kupczyk D., Baumgart S., Paprocka R., Studzińska R., Molecules, 2023, 28(13), 5041 |
| [26] |
She H. X., Chen Y. M., Yang J. Q., Chem. J. Chinese Universities, 2025, 46(5), 20240548 |
| [27] |
佘慧娴, 陈阳密, 杨家强. 高等学校化学学报, 2025, 46(5), 20240548 |
| [28] |
Chen J. P., Battini N., Ansari M. F., Zhou C. H., Eur. J. Med. Chem., 2021, 217, 113340 |
| [29] |
Dhuguru J., Zviagin E., Skouta R., Pharmaceuticals, 2022, 15(1), 66 |
| [30] |
Alfei S., Zuccari, G., Pharmaceuticals, 2022, 15(3), 384 |
| [31] |
Feng L. S., Lv K., Liu M. L., Wang S., Zhao J., You X. F., Li S. J., Cao J., Guo H. Y., Eur. J. Med. Chem., 2012, 55, 125—136 |
| [32] |
Alsoud Y. A., Saber S. O. W., Shtaiwi A., Alsawakhneh S. O., Alhelal K. A. L., Salman Q. F. A., Z. Naturforsch. C, 2023, 78(3/4), 93—103 |
| [33] |
Li Z. Z., Gopala L., Tangadanchu V. K. R., Gao W. W., Zhou C. H., Bioorgan. Med. Chem., 2017, 25(24), 6511—6522 |
| [34] |
Zhang J. Y., Ba Y. Y., Wang S., Yang H. X., Hou X. H., Xu Z., Eur. J. Med. Chem., 2019, 179, 376—388 |
| [35] |
Salnikov O. G., Chukanov N. V., Svyatova A., Trofimov I. A., Kabir M. S. H., Gelovani J. G., Kovtunov K. V., Koptyug I. V., Chekmenev E. Y., Angew. Chem. Int. Edit., 2021, 60(5), 2406—2413 |
| [36] |
Alasmary F. A. S., Snelling A. M., Zain M. E., Alafeefy A. M., Awaad A. S., Karodia N., Molecules, 2015, 20(8), 15206—15223 |
| [37] |
Zhao X. X., Zhang J. C., Li S. H., Yang Q. P., Li Y. C., Pang S. P., Org. Process Res. Dev., 2014, 18(7), 886—890 |
| [38] |
Humphries R., Bobenchik A. M., Hindler J. A., Schuetz A. N., J. Clin. Microbiol., 2021, 59(12), e00213—21 |
贵州省科技计划项目(批准号: 黔科合基础-ZK[2024]一般265)和国家级大学生创新创业训练计划项目(202310661006)
/
| 〈 |
|
〉 |