冲突芳香性Ca3B8纳米团簇转子的理论研究
Theoretical Study of the Conflicting-aromatic Ca3B8 Nanocluster Rotor
基于全局极小搜索和理论计算, 预测了具有冲突芳香性的Ca3B8纳米团簇分子转子. 研究表明, Ca3B8全局极小团簇具有独特的三层同轴反夹心结构: 较小畸变的B©B7分子轮为中间层, 上层为一个水平方向的 Ca2单元, 下层为一个Ca原子. 玻恩-奥本海默分子动力学模拟揭示: 在300及600 K条件下, Ca3B8团簇具有新颖的动力学流变性, Ca2单元可以在伞状CaB8上方围绕中心轴自由旋转. 在单点CCSD(T)/6-311+G(d)//PBE0/ 6-311+G(d)水平上, Ca3B8团簇旋转能垒仅为0.25 kJ/mol. 电荷数据揭示3个Ca原子向中间的B©B7分子轮有明显的电荷转移, Ca3B8团簇可近似为[Ca2]2+[B©B7]4-[Ca]2+离子化合物. 化学键分析结果表明, Ca3B8团簇中间的B©B7分子轮具有8π和6σ离域电子, 为冲突芳香性体系. Ca3B8团簇具有冲突芳香性的硼基纳米团簇转子, 进一步拓展了硼基动力学流变性体系的研究领域.
The unique structure, properties and potential application prospects of nanocluster molecular rotors have aroused extensive attention from researchers. The electron-deficient nature of boron makes boron-based clusters a fertile ground for designing nanocluster molecular rotors. In 2010, the discovery of the dynamic fluxionality of B cluster initiated the research on boron-based nonocluster molecular rotors. Metal doping is an effective strategy for expanding the family members of boron-based cluster molecular rotors. Among the currently reported boron alloy molecular rotors, the boron cluster units all possess aromaticity. Herein, the first nano-rotor of Ca3B8 cluster with conflicting aromaticity has been theoretically predicted, based on computational global-minimum searches and quantum chemical calculations. It features a unique three-layer coaxial inverted sandwich structure: a slightly distorted B©B7 molecular wheel serves as the middle layer, with a horizontal Ca2 dimer above and a Ca atom below. Born-Oppenheimer molecular dynamics simulations reveal that the boron-based Ca3B8 cluster possesses novel dynamic fluxionality: the Ca2 dimer can rotate freely on the umbrella-like CaB8 base plate around the central axis at 300 and 600 K. The rotation barrier is only 0.25 kJ/mol at the single-point CCSD(T)/6-311+G(d)//PBE0/6-311+ G(d) level. Ca3B8 can be approximatively formulated as [Ca2]2+[B©B7]4-[Ca]2+, due to the weak B—Ca covalent bonding and obviously charge transfer from the Ca atoms to the boron motif. Chemical bonding analyses reveal that Ca3B8 has 8π and 6σ delocalized electrons on distorted B8 wheel, leading to a conflicting-aromatic system. Ca3B8 represents the first boron alloy nano-rotor with conflicting-aromaticity, further expanding the research field of boron-based fluxional systems.
分子转子 / 硼合金团簇 / 全局极小 / 动力学流变性 / 冲突芳香性
Molecular rotor / Boron alloy cluster / Global minimum / Fluxionality / Conflicting-aromaticity
支持信息见 http://www.cjcu.jlu.edu.cn/CN/10.7503/20250149.
| [1] |
Jalife S., Liu L., Pan S., Cabellos J. L., Osorio E., Lu C., Heine T., Donald K. J., Merino G., Nanoscale, 2016, 8(40), 17639—17644 |
| [2] |
Pan S., Barroso J., Jalife S., Heine T., Asmis K. R., Merino G., Acc. Chem. Res., 2019, 52(9), 2732—2744 |
| [3] |
Sergeeva A. P., Popov I. A., Piazza Z. A., Li W. L., Romanescu C., Wang L. S., Boldyrev A. I., Acc. Chem. Res., 2014, 47(4), 1349—1358 |
| [4] |
Zhai H. J., Zhao Y. F., Li W. L., Chen Q., Bai H., Hu H. S., Piazza Z. A., Tian W. J., Lu H. G., Wu Y. B., Mu Y. W., Wei G. F., Liu Z. P., Li J., Li S. D., Wang L. S., Nat. Chem., 2014, 6, 727—731 |
| [5] |
Wang L. S., Int. Rev. Phys. Chem., 2016, 35, 69—142 |
| [6] |
Zhai H. J., Kiran B., Li J., Wang L. S., Nat. Mater., 2003, 2(12), 827—833 |
| [7] |
Jian T., Chen X. N., Li S. D., Boldyrev A. I., Li J., Wang L. S., Chem. Soc. Rev., 2019, 48(13), 3550—3591 |
| [8] |
Barroso J., Pan S., Merino G., Chem. Soc. Rev., 2022, 51(3), 1098—1123 |
| [9] |
Erhardt S., Frenking G., Chen Z. F., Schleyer P. V. R., Angew. Chem. Int. Ed., 2005, 44(7), 1078—1082 |
| [10] |
Huang W., Sergeeva A. P., Zhai H. J., Averkiev B. B., Wang L. S., Boldyrev A. I., Nat. Chem., 2010, 2, 202—206 |
| [11] |
Jiménez⁃Halla J. O. C., Islas R., Heine T., Merino G., Angew. Chem. Int. Ed., 2010, 33(49), 5668—5671 |
| [12] |
Martínez⁃Guajardo G., Sergeeva A. P., Boldyrev A. I., Heine T., Ugalde J. M., Merino G., Chem. Commun., 2011, 47(22), 6242—6244 |
| [13] |
Moreno D., Pan S., Zeonjuk L. L., Islas R., Osorio E., Martinez⁃Guajardo G., Chattaraj P. K., Heine T., Merino G., Chem. Commun., 2014, 50(60), 8140—8143 |
| [14] |
Tai T. B., Ceulemans A., Nguyen M. T., Chem. Eur. J., 2012, 18(15), 4510—4512 |
| [15] |
Wang Y. J., Zhao X. Y., Chen Q., Zhai H. J., Li S. D., Nanoscale, 2015, 7(38), 16054—16060 |
| [16] |
Wang Y. J., You X. R., Chen Q., Feng L. Y., Wang K., Ou T., Zhao X. Y., Zhai H. J., Li S. D., Phys. Chem. Chem. Phys., 2016, 18(23), 15774—15782 |
| [17] |
Fagiani M. R., Song X., Petkov P., Debnath S., Gewinner S., Schöllkopf W., Heine T., Fielicke A., Asmis K. R., Angew. Chem. Int. Ed., 2017, 56(2), 501—504 |
| [18] |
Liu L., Moreno D., Osorio E., Castro A. C., Pan S., Chattaraj P. K., Heine T., Merino G., RSC Adv., 2016, 6(32), 27177—27182 |
| [19] |
Li W. L., Jian T., Chen X., Li H. R., Chen T. T., Luo X. M., Li S. D., Li J., Wang L. S., Chem. Commun., 2017, 53(10), 1587—1590 |
| [20] |
Guo J. C., Feng L. Y., Wang Y. J., Jalife S., Vásquez⁃Espinal A., Cabellos J. L., Pan S., Merino G., Zhai H. J., Angew. Chem. Int. Ed., 2017, 56(34), 10174—10177 |
| [21] |
Wang Y. J., Feng L. Y., Guo J. C., Zhai H. J., Chem. Asian. J., 2017, 12(22), 2899—2903 |
| [22] |
Zhang X. Y.,Guo J. C., J. Mol. Model., 2020, 26(2), 30 |
| [23] |
Yu R., Barroso J., Wang M. H., Liang W. Y., Chen C., Zarate X., Orozco⁃Ic M., Cui Z. H., Merino G., Phys. Chem. Chem. Phys., 2020, 22(21), 12312—12320 |
| [24] |
Yu R., Yan G. R., Liu Y. Q., Cui Z. H., J. Comput. Chem., 2023, 44(3), 240—247 |
| [25] |
Bai L. X., Orozco⁃Ic M., Zarate X., Sundholm D., Pan S., Guo J. C., Merino G., Molecules, 2022, 27(21), 7407 |
| [26] |
Yue R. X., Gao S. J., Han P. F., Zhai H. J., RSC Adv., 2023, 13(3), 1964—1973 |
| [27] |
Xu J. K., Zhang H. Y., Cui L. J., Cui Z. H., J. Chem. Phys., 2024, 161(17), 174306 |
| [28] |
Feng L. Y., Guo J. C., Li P. F., Zhai H. J., Phys. Chem. Chem. Phys., 2018, 20(35), 22719—22729 |
| [29] |
Wang Y. J., Feng L. Y., Zhai H. J., Chem. Asian J., 2019, 14(17), 2945—2949 |
| [30] |
Han P. F., Wang Y. J., Feng L. Y., Gao S. J., Sun Q., Zhai H. J., Molecules, 2023, 28(7), 3276 |
| [31] |
Wang Y. J., Feng L. Y., Zhai H. J., Phys. Chem. Chem. Phys., 2019, 21(33), 18338—18345 |
| [32] |
Liu F. L., Guo J. C., Zhai H. J., Phys. Chem. Chem. Phys., 2024, 26(7), 6049—6057 |
| [33] |
Feng L. Y., Guo J. C., Wang Y. J., Zhang X. Y., Zhai H. J., Phys. Chem. Chem. Phys., 2023, 25(39), 26443—26454 |
| [34] |
Chen W. J., Choi H. W., Yuan D. F., Boldyrev A. I., Wang L. S., J. Vac. Sci Technol. A, 2022, 40(4), 042201 |
| [35] |
Xu J. K., Zhang H. Y., Cui Z. H., Inorg. Chem., 2024, 63(39), 18502—18507 |
| [36] |
Bai L. X., Barroso J., Orozco⁃Ic M., Ortiz⁃Chi F., Guo J. C., Merino G., Chem. Commun., 2023, 59(33), 4966—4969 |
| [37] |
Jin B., Yuan C. X., Guo J. C., Wu Y. B., Nanoscale, 2024, 16(9), 4778—4786 |
| [38] |
Jin B., Yan M., Feng L. Y., Miao C. Q., Wang Y. J., Chem. Eur. J., 2024, 30(15), e202304134 |
| [39] |
Jin B., Wang Z. R., Yan M., Feng L. Y., Miao C. Q., Wang Y. J., Chem. Eur. J., 2024, 30(51), e202402132 |
| [40] |
Saunders M., J. Comput. Chem., 2004, 25(5), 621—626 |
| [41] |
Bera P. P., Sattelmeyer K. W., Saunders M., Schaefer III H. F., Schleyer P. V. R., J. Phys. Chem. A, 2006, 110(13), 4287—4290 |
| [42] |
SergeevaA. P.,AverkievB. B.,ZhaiH. J.,BoldyrevA. I.,WangL. S., J. Chem. Phys., 2011, 134,224304 |
| [43] |
Adamo C., Barone V., J. Chem. Phys., 1999, 110(13), 6158—6170 |
| [44] |
Pople J. A., Head⁃Gordon M., Raghavachari K., J. Chem. Phys., 1987, 87(10), 5968—5975 |
| [45] |
Millam J. M., Bakken V., Chen W., Hase W. L., Schlegel H. B., J. Chem. Phys., 1999, 111, 3800—3805 |
| [46] |
Reed A. E., Curtiss L. A., Weinhold F. A., Chem. Rev., 1988, 88(6), 899—926 |
| [47] |
Zubarev D. Y., Boldyrev A. I., Phys. Chem. Chem. Phys., 2008, 10(34), 5207—5217 |
| [48] |
Lu T., Chen F., J. Comput. Chem., 2012, 33(5), 580—592 |
| [49] |
Lu T., J. Chem. Phys., 2024, 161(8), 082503 |
| [50] |
Schleyer P. V. R., Maerker C., Dransfeld A., Jiao H. J., Hommes N. J. R. V., J. Am. Chem. Soc., 1996, 118(26), 6317—6318 |
| [51] |
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams⁃Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 16, Revision C.01, Gaussian Inc., Wallingford CT, 2016 |
| [52] |
Legault C. Y., CYLview, 1.0b, Université de Sherbrooke, 2009, http://www.cylview.org |
| [53] |
Varetto U., Molekel 5.4.0.8, Swiss National Supercomputing Center, Manno, Switzerland, 2009 |
| [54] |
Pyykkö P., J. Phys. Chem. A, 2015, 119(11), 2326—2337 |
| [55] |
Xiong J., Wu M., Yao L. Chem. Res. Chinese Universities, 2024, 40(5), 887—893 |
| [56] |
Wang Q., Pan S., Wu Y. B., Deng G., Bian J. H., Wang G., Zhao L., Zhou M., Frenking G., Angew. Chem. Int. Ed., 2019, 58(34), 17365—17374 |
| [57] |
Chen C., Wang M. H., Feng L. Y., Zhao L. Q., Guo J. C., Zhai H. J., Cui Z. H., Pan S., Merino G., Chem. Sci., 2022, 13(27), 8045—8051 |
国家自然科学基金(22173053)
/
| 〈 |
|
〉 |