高效一维豆荚状NiFe2O4-Ni x Fe1-x S异质结构电催化剂的制备及析氧反应性能
陈红 , 张杭 , 付思雨 , 张鑫 , 牟佳佳
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (10) : 97 -104.
高效一维豆荚状NiFe2O4-Ni x Fe1-x S异质结构电催化剂的制备及析氧反应性能
Fabrication of Highly Efficient 1D Pod-like NiFe2O4-Ni x Fe1-x S Heterogeneous Electrocatalysts for Enhanced Oxygen Evolution
针对析氧反应(OER)催化剂活性低、 反应速率差的问题, 构建纳米异质结催化剂是提升析氧反应动力学性能的高效方法. 本文通过静电纺丝结合硫化煅烧两步法, 设计并制备了一种一维豆荚状NiFe2O4-Ni x Fe1-x S异质结构. 通过调控硫化温度(350~550 ℃), 优化了NiFe2O4-Ni x Fe1-x S的异质界面结构与组分协同效应. 结果显示, 在450 ℃的硫化样品(NiFe2O4-Ni x Fe1-x S-450)中, Ni x Fe1-x S纳米片均匀负载于NiFe2O₄纳米棒表面, 形成稳定的异质界面, 并伴随Fe²+/Fe³⁺, Ni²+/Ni³⁺多价态共存及氧空位富集. 电化学测试结果表明, 该材料在 1 mol/L KOH中展现出优异的析氧性能: 在10和50 mA/cm2电流密度下的过电位分别为344和396 mV, Tafel斜率低至40.7 mV/dec, 同时电化学活性面积有所提升. 该材料性能提升的主要机制为: 异质界面处的电子再分布促进了活性位点暴露, 氧空位加速了电荷转移, 而一维豆荚结构增强了传质效率与结构稳定性.
To address the challenges of insufficient activity and sluggish kinetics in oxygen evolution reaction(OER) catalysts, this study innovatively designed and synthesized a one-dimensional pod-like NiFe2O4-Ni x Fe1-x S heterojunction material via a two-step method combining electrospinning and sulfurization calcination. By regulating the sulfurization temperature(350—550 ℃), the interfacial heterostructure and component synergy were optimized. Characterization results revealed that the sample sulfurized at 450 ℃(NiFe2O4-Ni x Fe1-x S-450) exhibited that Ni x Fe1-x S nanosheets uniformly anchored on NiFe2O4 nanorods, forming a stable heterointerface with coexisting Fe²+/Fe³⁺ and Ni²+/Ni³⁺ multivalent states, along with enriched oxygen vacancies. Electrochemical tests demonstrated outstanding OER performance in 1 mol/L KOH, achieving low overpotentials of 344 and 396 mV at current densities of 10 and 50 mA/cm², respectively, and a Tafel slope of 40.7 mV/dec. The Electronic redistribution at the heterointerface enhanced exposed active sites and oxygen vacancies accelerated charge transfer. The one-dimensional pod-like structure improved mass transport efficiency and structural stability. This work provides a new paradigm for the rational design of transition metal-based heterojunction catalysts through structure-performance synergy, offering valuable insights for advancing efficient water-splitting technologies.
Oxygen evolution reaction / Heterointerface / Charge transfer / One-dimensional pod-like structure
支持信息见http: //www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20250156.
| [1] |
Zhang X., Zhang J., Ma Z., Wang L., Yu K., Wang Z., Wang J., Zhao B., J. Colloid Interface Sci., 2024, 665, 313—322 |
| [2] |
Wang F. L., Zhang Y. X., Zhou J. C., Shi Z. N., Dong B., Xie J. Y., Dong Y. W., Yu J. F., Chai Y. M., Inorg. Chem. Front., 2022, 9, 2068—2080 |
| [3] |
Sarfraz B., Bashir I., Rauf A., Fuel, 2023, 337, 127253 |
| [4] |
Zheng J., Meng D., Guo J., Zhang A., Wang Z., Small, 2024, 20, 2407177 |
| [5] |
Qiao Y., Pan Y., Zhang J., Wang B., Wu T., Fan W., Cao Y., Mehmood R., Zhang F., Zhang F., Chinese J. Catal., 2022, 43, 2354—2362 |
| [6] |
Wei C., Feng Z., Scherer G. G., Barber J., Shao Horn Y., Xu Z. J., Adv. Mater., 2017, 29, 1606800 |
| [7] |
Lu Z., Wang J., Zhang P., Guo W., Shen Y., Liu P., Ji J., Du H., Zhao M., Liang H., Guo J., Appl. Catal. B: Environ., 2024, 353, 124073 |
| [8] |
Fang M., Gao X., Liang J., Guo B., Zou L., Lu J., Gao Y., Tse E. C. M., Liu J., Mater. Chem. A, 2022, 10, 7013—7019 |
| [9] |
Krishnan A. A., Harikumar S., AneeshKumar M. A., Nair R. B., Kurian S., Ameen Sha M., Arun P. S., Catal. Sci. Technol., 2024, 14, 6155—6175 |
| [10] |
Zhang D., Chen P., Qin R., Li H., Pu X., Zou J. P., Liu J., Zhang D., Ji X. Y., Appl. Catal. B: Environ., 2025, 361, 124690 |
| [11] |
Chen F., Shi D., Yang M., Jiang H., Shao Y., Wang S., Zhang B., Shen J., Wu Y., Hao X., Adv. Funct. Mater., 2021, 31, 2007132 |
| [12] |
Cao L., Liang X., Ou X., Yang X., Li Y., Yang C., Lin Z., Liu M., Adv. Funct. Mater., 2020, 30, 1910732 |
| [13] |
He Y., Qian J., Wang P., Xie T., Dionysiou D. D., Lu B., Tang S., Appl. Catal. B: Environ., 2023, 330, 122620 |
| [14] |
Na R., Min K., Kim H., Son Y., Shim S. E., Baeck S. H., J. Energy Chem., 2023, 84, 140—152 |
| [15] |
Xu N., Zhang Y., Zhang T., Liu Y., Qiao J., Nano Energy, 2019, 57, 176—185 |
| [16] |
Yang H., Liu Y., Luo S., Zhao Z., Wang X., Luo Y., Wang Z., Jin J., Ma J., ACS Catal., 2017, 7, 5557—5567 |
| [17] |
Zhao X., Pachfule P., Li S., Simke J. R. J., Schmidt J., Thomas A., Angew. Chem. Int. Ed. Engl., 2018, 57, 8921—8926 |
| [18] |
An L., Zhang Z., Feng J., Lv F., Li Y., Wang R., Lu M., Gupta R. B., Xi P., Zhang S., J. Am. Chem. Soc., 2018, 140, 17624—17631 |
| [19] |
Zhou P., Wu L., Ji Z., Fan C., Shen X., Zhu G., Xu L., J. Colloid Interface Sci., 2023, 646, 98—106 |
| [20] |
Ma J., Tian Y., Li J., Wang R., Liu J., Int. J. Hydrogen Energy, 2024, 88, 190—198 |
| [21] |
Hong L., Jing C., Zhang Y., Huang H., Jiang Q., Tang J., Environ. Chem. Eng., 2025, 13, 115224 |
| [22] |
He R., Huang X., Feng L., Energy & Fuels, 2022, 36, 6675—6694 |
| [23] |
Tong X., Xu H., Wei S., Sun D., Lin S., Zhou H., Ji X., Yang Y., Zhang L., Mater. Sci. Semicond. Process, 2025, 192, 109396 |
| [24] |
Gao Y., Cui P., Gu T., Miao F., Int. J. Hydrogen Energy, 2025, 109, 287—294 |
| [25] |
Liu W. H., Wang K. K., Dou J. Y., Zhang T. C., Dong S. Y., Chem. J. Chinese Universities, 2024, 45(4), 20240005 |
| [26] |
刘文欢, 王康康, 窦嘉阳, 张彤琛, 董社英.高等学校化学学报, 2024, 45(4), 20240005 |
| [27] |
Yuan J., Huang B., Lu Y., Xu H., Qiao Y., Xu H., He G., Chen H., Appl. Surf. Sci., 2023, 610, 155480 |
| [28] |
Wang Z., Wang S., Xu X., Shi H., Cui S., Liu W., Tang T., J. Colloid Interface Sci., 2025, 677, 11—24 |
| [29] |
Shen K., Tang Y., Zhou Q., Zhang Y., Ge W., Shai X., Deng S., Yang P., Deng S., Wang J., Chem. Eng. J., 2023, 471, 144827 |
| [30] |
Xu L., AliShah S., Khan H., Sayyar R., Shen X., Khan I., Yuan A., Yaseen W., AliGhazi Z., Naeem A., Ullah H., Li X., Wang C., J. Colloid Interface Sci., 2022, 617, 1—10 |
| [31] |
Fu Z., Liu S., Mai Z., Tang Z., Qin D. D., Tian Y., Wang X., Chem⁃Asian J., 2020, 15, 3568—3574 |
| [32] |
Xu H., Sun X., Ding L., Liu J., Zhang D., Liu M., Wang X., Zhang Q., Zhang J., Small, 2025, 21, 2406071 |
| [33] |
Liu Z. Z., Yao Y. F., Fang K., Lyu Y. R., Ye Y., Liu H. Y., Chem. J. Chinese Universities, 2025, 46(5), 20240529 |
| [34] |
刘兆镇, 姚燕芳, 房坤, 吕昀叡, 叶勇, 刘海洋. 高等学校化学学报, 2025, 46(5), 20240529 |
| [35] |
Chen X., Liu J. Y., Yu J., Chem. J. Chinese Universities, 2024, 45(6), 20240042 |
| [36] |
陈鑫, 刘婧媛, 于静. 高等学校化学学报, 2024, 45(6), 20240042 |
| [37] |
He G. Y., Wang Y. T., Chen X. M., Zhou Y., Meng C., Li F. T., Electrochimica Acta, 2022, 411, 140073 |
国家自然科学基金(51602006)
吉林省科技厅项目(YDZJ202401389ZYTS)
吉林省科技厅项目(YDZJ202301ZYTS276)
吉林省教育厅项目(JJKH20230056KJ)
北华大学大学生创新训练项目(S202410201092)
/
| 〈 |
|
〉 |