一维铀酰羧酸膦酸配位聚合物对水溶液中Fe3+的高灵敏选择性检测
One-Dimensional Uranyl Carboxyphosphonate Coordination Polymer for Highly Sensitive and Selective Detection of Fe3+ ion in Aqueous Media
利用邻羧基苯亚甲基膦酸(2-pmbH3)配体与铀酰离子构筑了一维铀酰羧酸膦酸配位聚合物(UO2)· (2-pmbH2)2(1). 其中, 膦酸基团通过2个氧原子桥联铀酰离子形成一维链, 链骨架两侧有序分布着质子化的羧酸基团和膦酸氧原子, 链与链之间通过氢键相互作用形成超分子网络. 此外, 化合物1展现出较高的水稳定性(在pH=1~12范围内保持稳定)和良好的发光性能(量子产率QY=14.1%). 通过荧光法分析化合物1在不同金属离子水溶液中发光强度的变化发现, 仅Fe3+可使化合物1的最强特征发射峰(λem=524 nm)发生>95%的猝灭, 表现出显著的选择性. 建立了Fe3+浓度与化合物1荧光强度的定量关系, 表明该传感材料在低浓度(0~0.04 mmol/L)范围内呈现良好的线性响应(R2=0.99)及低的检出限(3.67×10-7 mol/L). 基于此, 化合物1凭借其独特的分子结构、 良好的发光特性和较高的水环境稳定性, 以及对水溶液中Fe3+离子表现出的高选择性和灵敏的猝灭响应特征, 在金属阳离子传感检测方面显示出优异的性能.
A one-dimensional uranyl carboxyphosphonate coordination polymer, (UO2)(2-pmbH2)2(1), was synthesized from 2-pmbH3 ligand and uranyl ions. In this structure, phosphonate groups bridge uranyl ions through two oxygen atoms to form one-dimensional chain, with protonated carboxyl groups and phosphonate oxygen atoms orderly distributed on both sides of the chain backbone. Interchain hydrogen-bond interactions form a supramolecular network. Furthermore, compound 1 exhibits high water stability(stable at pH=1—12) and good luminescent properties(quantum yield QY=14.1%). Fluorescence analysis of compound 1 in various metal ion aqueous solutions revealed that only Fe3+ can induce >95% quenching efficiency for its strongest characteristic emission peak(λem=524 nm), demonstrating remarkable selectivity. By establishing a quantitative relationship between Fe3+ concentration and fluorescence intensity of compound 1, the sensing material shows a good linear response(R2=0.99) in the low concentration range(0—0.04 mmol·L-1) with a low detection limit(3.67×10-7 mol/L). Therefore, due to its unique molecular structure, good luminescent properties, high water stability, as well as its high selectivity and sensitive quenching response toward Fe3+ ions in aqueous solutions, compound 1 demonstrates great potential as a sensing material for the detection of metal ions.
铀酰羧酸膦酸配位聚合物 / 荧光 / Fe3+ / 金属离子检测
Uranyl carboxyphosphonate coordination polymer / Luminescence / Fe3+ / Metal ions detection
支持信息见 http: //www.cjcu.jlu.edu.cn/CN/10.7503/20250165.
| [1] |
Boone M., Artizzu F., Goura J., Mara D., Deun R. V., D’hooghe M., Coord. Chem. Rev., 2024, 501, 215525 |
| [2] |
Givaja G., Amo⁃Ochoa P., Gómez⁃García C. J., Zamora F., Chem. Soc. Rev., 2012, 41, 115—147 |
| [3] |
Lippi M., Cametti M., Coord. Chem. Rev., 2021, 430, 213661 |
| [4] |
Liu D. M., Su Y. J., Li S. S., Xu Q. W., Li X., Chem. J. Chinese Universities, 2020, 41(2), 253—261 |
| [5] |
刘东枚, 苏雅静, 李姗姗, 许奇炜, 李夏. 高等学校化学学报, 2020, 41(2), 253—261 |
| [6] |
Tao H., Ji C., Zhang J., Yin Y., Jia W., Jiang X., Xu J., Yang Y., Chem. Res. Chinese Universities, 2024, 40(3), 499―507 |
| [7] |
Liu J. Q., Luo Z. D., Pan Y., Singh A. K., Trivedi M., Kumar A., Coord. Chem. Rev., 2020, 406, 213145 |
| [8] |
Razavi S. A. A., Morsali A., Coord. Chem. Rev., 2020, 415, 213299 |
| [9] |
Lu X., Jayakumar K., Wen Y., Hojjati⁃Najafabadi A., Duan X., Xu J., Microchim Acta, 2024, 191, 58 |
| [10] |
Panda S. K., Mishrat S., Singh A. K., Dalton Trans., 2021, 50, 7139—7155 |
| [11] |
Lu P., Zhang S. P., Zhang P., Ni A., Chin. J. Inorg. Chem., 2025, 41(5), 959—968 |
| [12] |
路平平, 张佩佩, 张树光, 倪爱云. 无机化学学报, 2025, 41(5), 959—968 |
| [13] |
Natrajan L. S., Chem. Soc. Rev., 2012, 256,1583—1603 |
| [14] |
Andrews M. B., Cahill C. L., Chem. Rev., 2013, 113, 1121—1136 |
| [15] |
Liu Z., Han C., Tan W., Jia J., Zheng T., Mol. Syst. Des. Eng., 2023, 8, 146—150 |
| [16] |
Zheng T., Tan W., Zheng L. M., Acc. Chem. Res., 2024, 57, 2973—2984 |
| [17] |
Che G., Yang W., Wang C., Li M., Li X., Fu Y., Pan Q., Anal. Chim. Acta, 2023, 1265, 341327 |
| [18] |
Xiao Y., You Z. X., Guan Q. L., Sun L. X., Xing Y. H., Bai F. Y., Chem. Commun., 2023, 59, 9501 |
| [19] |
Che G., Gu D., Yang W., Li M., Pan Q., Cryst. Growth Des., 2022, 22, 1984—1990 |
| [20] |
Lv P., Liu N., Mao S. B., Li W. Y., Fu Y., Xu W., Dyes Pigm., 2023, 210, 111005 |
| [21] |
Liu W., Xie J., Zhang L., Silver M. A., Wang S., Dalton Trans., 2018, 47, 649—653 |
| [22] |
Liang L. L, Zhang R. L., Zhao J. S., Inorg. Chem., 2020, 59, 7980—7990 |
| [23] |
Wang L., Xu W., Li W. Y., Xie M., Zheng Y. Q., Chem. Asian J., 2019, 14, 4246—4254 |
| [24] |
Wen G. H., Zou Q., Huang X. D., Zhang K., Bao S. S., Zheng L. M., Polyhedron, 2021, 205, 115327 |
| [25] |
Wen G. H., Wen. D., Chen. X. M., Ma X. F., Weng G. G., Wei Y. F., Bao S. S., Xie X. J., Hu S. X., Zheng L. M., Acta Chim. Sinica, 2023, 81, 1311—1317 |
| [26] |
温哥华, 温都日娜, 陈秀梅, 麻秀芳, 翁果果, 韦依凡, 鲍松松, 谢小吉, 胡淑贤, 郑丽敏. 化学学报. 2023, 81, 1311—1317 |
| [27] |
Wen G. H., Chen. X., Xu K., Xie X., Bao S. S., Zheng L. M., Dalton Trans., 2021, 50, 17129—17139 |
| [28] |
Srivastava A., Mohana R., Dumpala R., Kumar., Kumar R., Rawat N., Inorg. Chem., 2022, 61(39), 15452—15462 |
| [29] |
Yang X. J., Ren M., Bao S. S., Hoshino N., Akutagawa T., Zheng L. M., Chem. Commun., 2014, 50, 3979 |
| [30] |
Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H., J. Appl. Crystallogr., 2009, 42, 339—341 |
| [31] |
Sheldrick G., Acta Crystallogr., 2015, 71, 3—8 |
| [32] |
Wen G. H., Zou Q., Xu K., Huang X. D., Bao S. S., Chen X. T., Ouyang Z., Wang Z., Zheng L. M., Chem. Eur. J., 2022, e20220721 |
| [33] |
Ji J., Qi C., Zhao H., Yan X., Chai Z., Wang S., Zheng T., Inorg. Chem., 2022, 61, 16794—16804 |
| [34] |
Yang W., Lv P., Li J., Jin X., Yang Ke., Dai H., Xu W., Cryst. Growth Des., 2024, 24, 9133—9145 |
| [35] |
Hou X., Tang S. Fu., Inorg. Chem., 2021, 60, 1869—1876 |
| [36] |
Tan W., Miao X., Li Y., Zhang M., Chem. Res. Chinese Universities, 2024, 40(6), 1227―1232 |
| [37] |
Liu L., Chen X. L., Cai M., Yan R. K., Cui H. L., Yang H., Wang J. J., Chin. Chem. Lett., 2023, 34, 108411 |
| [38] |
Wang D., Li W., Li G., Hua J., Liu Y., Chem. Res. Chinese Universities, 2024, 40(1), 119―126 |
山西省大学生创新创业训练计划项目(S202413537003)
山西电子科技学院科研启动经费(2023RKJ035)
山西省高等学校科技创新项目(2023L447)
/
| 〈 |
|
〉 |