落入式量热法对熔盐储热材料热力学性质的研究
吴冰 , 尹楠 , 胡金玲 , 魏小兰 , 赵红 , 史全
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (11) : 134 -142.
落入式量热法对熔盐储热材料热力学性质的研究
Thermodynamic Property of Molten Salt Thermal Energy Storage Materials Using Drop Calorimetric Technique
熔盐储热材料是当前高温储热技术领域备受关注的储热介质, 对于其热力学性质的研究与理解是开展熔盐储热材料研究的重要基础. 本文建立了高温落入式量热装置, 并用于熔盐储热材料热力学性质的研究; 通过测量标准物质α-Al2O3的焓值确定量热装置的测量准确度为±0.5%; 利用测得的高纯度Sn固-液相变前后的焓值, 分析得到量热装置的相变温度、 焓值与差示扫描量热方法测量结果偏差分别为±0.12%和±1.30%. 使用该量热装置测量了NaNO3、 KNO3及其太阳熔盐(60%NaNO3-40%KNO3)在350~750 K温区的焓值, 通过数据拟合分别得到了固相与液相的焓值多项式方程, 计算得到相变温度与相变焓值. 结果表明, 落入式量热法能够准确测量熔盐储热材料焓值、 相变温度与相变焓值等热力学性质, 可为熔盐储热材料热力学性质的研究提供可靠的量热实验手段.
As heat storage media, molten salt thermal storage materials have received considerable attention in the field of high-temperature thermal storage technology. Research and understanding of their thermodynamic properties are fundamental to advancing molten salt thermal storage materials. In this study, a high-temperature drop calorimeter was developed for investigating the thermodynamic properties of molten salt thermal energy storage materials. The accuracy of the drop calorimeter was determined to be ±0.5% by measuring the enthalpy of the standard material of α-Al2O3. By measuring the enthalpy values of high-purity Sn before and after its solid-liquid phase transition, the measurement deviations for phase transition temperature and enthalpy from the differential scanning calorimetry(DSC) measurement results were determined to be ±0.12% and ±1.3%, respectively. The enthalpy values of NaNO3, KNO3, and solar salt(60%NaNO3-40%KNO3) were measured by the drop calorimeter in the temperature range of 350—750 K. Polynomial equations for the enthalpy of both the solid and liquid phases were obtained through data fitting, and the phase transition temperatures and enthalpy values were calculated. The results of this study indicate that the drop calorimetry method can accurately measure the enthalpy, phase transition temperature, phase transition enthalpy, and other thermodynamic properties of molten salt thermal storage materials, providing a reliable calorimetric experimental method for their thermodynamic research.
落入式量热法 / 太阳熔盐 / 硝酸钾 / 硝酸钠 / 相变焓 / 相变温度 / 焓
Drop calorimetric technique / Solar molten salt / Potassium nitrate / Sodium nitrate / Phase transition enthalpy / Phase transition temperature / Enthalpy
| [1] |
Rolka P., Przybylinski T., Kwidzinski R., Lackowski M., Renewable Energy, 2021, 172, 541—550 |
| [2] |
Bauer T., Pfleger N., Breidenbach N., Eck M., Laing D., Kaesche S., Applied Energy, 2013, 111, 1114—1119 |
| [3] |
Liu J., Xiao X., Energy, 2023, 282, 128732 |
| [4] |
Mazo J., Delgado M., Marin J. M., Zalba B., Energy Build., 2012, 47, 458—466 |
| [5] |
Zhou W., Yang Z., Feng Y., Lin L., Int. J. Heat Mass Transfer, 2022, 198, 123422 |
| [6] |
Tamme R., Bauer T., Buschle J., Laing D., Müller‐Steinhagen H., Steinmann W. D., Int. J. Energy Res., 2008, 32, 264—271 |
| [7] |
Pfleger N., Braun M., Eck M., Bauer T., Energy Procedia, 2015, 69, 988—996 |
| [8] |
Chen S. H., Cheng X. M., Li Y. Y., Wang X. L., Zheng H. H., Zhong H., Int. J. Energy Res., 2020, 44, 10008—10022 |
| [9] |
Carling R. W., Thermochim. Acta, 1983, 60, 265—275 |
| [10] |
Chieruzzi M., Cerritelli G. F., Miliozzi A., Kenny J. M., Torre L., Sol. Energy Mater. Sol. Cells, 2017, 167, 60—69 |
| [11] |
Goodwin H. M., Kalmus H. T., Phys. Rev., 1909, 28, 1—24 |
| [12] |
Kawakami M., Suzuki K., Yokoyama S., Takenaka T., Heat Capacity Measurement of Molten NaNO3 NaNO2 KNO3 by Drop Calorimetry, In VII International Conference on Molten Slags Fluxes and Salts, South African Institute of Mining and Metallurgy Fifth Floor, Johannesburg, 2004, 201—207 |
| [13] |
Reinsborough V. C., Wetmore F. E. W., Aust. J. Chem., 1966, 20, 1—8 |
| [14] |
Sun Y., Tan Z. C., Yin A. X., Chen S. X., Zhou L. X., Bull. Sci. Technol., 1989, 5, 24—29 |
| [15] |
孙毅, 谭志诚, 尹安学, 陈淑霞, 周立幸. 科技通报, 1989, 5, 24—29 |
| [16] |
Ma J., Guo J., Ahmad S., Li Z., Hong J., Remote Sens., 2020, 12, 937 |
| [17] |
El⁃Ashram T., Radiat. Eff. Defects Solids, 2006, 161, 193—197 |
| [18] |
Sun L. W., Li X. L., Tang C. M., Acta Phys. Chim. Sin., 2016, 32, 2327—2336 |
| [19] |
孙良伟, 李新利, 唐聪明. 物理化学学报, 2016, 32, 2327—2336 |
| [20] |
Barin I., In Thermochemical Data of Pure Substances, 3 ed., VCH, Federal Republic of Germany, 2008, Vol. 1, 906—1128 |
| [21] |
Rao K. M. P., Prabhu K. N., Mater. Eng. Perform., 2020, 29, 1860—1868 |
| [22] |
Tripi V., Sau S., Tizzoni A. C., Mansi E., Spadoni A., Corsaro N., D’Ottavi C., Capocelli M., Licoccia S., Delise T., J. Energy Storage, 2021, 33, 102065 |
| [23] |
Takahashi Y., Sakamoto R., Kamimoto M., Int. J. Thermophys., 1988, 9(6), 1081—1090 |
| [24] |
Qiao G., Lasfargues M., Alexiadis A., Ding Y., Appl. Therm. Eng., 2017, 111, 1517—1522 |
| [25] |
Zhang H., The Modification Research of Ternary Nitrates, Wuhan University of Technology, Wuhan, 2014 |
| [26] |
张晗. 三元硝酸盐的改性研究, 武汉: 武汉理工大学, 2014 |
| [27] |
McConohy G., Kruizenga A., Solar Energy, 2014, 103, 242—252 |
| [28] |
Costa S. C., Mahkamov K., Kenisarin M., Ismail M., Lynn K., Halimic E., Mullen D., J. Energy Res. Technol., 2019, 142, 31203—31209 |
| [29] |
Huang Y., Effect of in⁃situ Synthesized Nanoparticles on Thermal Properties of NaNO3⁃KNO3, Wuhan University of Technology, Wuhan, 2018 |
| [30] |
黄毅. 原位合成纳米颗粒对Solar salt热物理性能的影响, 武汉: 武汉理工大学, 2018 |
| [31] |
Kourkova L., Svoboda R., Sadovska G., Podzemna V., Kohutova A., Thermochim. Acta, 2009, 491, 80—83 |
| [32] |
Agyenim F., Hewitt N., Eames P., Smyth M., Renewable Sustainable Energy Rev., 2010, 14, 615—628 |
| [33] |
Orozco M. A., Acurio K., Vásquez⁃Aza F., Martínez⁃Gómez J., Chico⁃Proano A., Materials, 2021, 14, 7223 |
国家自然科学基金(22273100)
辽宁省科技计划项目(2024JH2/102600006)
大连化学物理研究所创新项目(DICP I202440)
/
| 〈 |
|
〉 |