超声辅助自组装构建多功能铁-原卟啉纳米粒及多模态肿瘤治疗
李勇 , 李燕 , 杨景儿 , 王柏萍 , 尹君雅 , 耿鹏 , 杨扬 , 黄文权
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (11) : 60 -68.
超声辅助自组装构建多功能铁-原卟啉纳米粒及多模态肿瘤治疗
Ultrasonically Assisted Self-assembly of Multifunctional Iron-protoporphyrin Nanoparticles and Multimodal Tumor Therapy
多模态协同治疗纳米材料对肿瘤精准治疗具有重要研究价值, 但其传统制备方法复杂且协同治疗效果低. 本文采用超声辅助自组装策略合成了铁-原卟啉IX(PpIX)配位纳米粒(Fe-PpIX), 实现了光/声/化学动力三位一体多模态肿瘤治疗. 采用透射电子显微镜(TEM)、 X射线光电子能谱(XPS)和傅里叶变换红外光谱(FTIR)对制备的纳米粒进行了表征, 结果表明Fe与PpIX羧基有效配位. 基于荧光光谱定量分析, 发现在光和声协同处理下Fe-PpIX可有效产生活性氧(ROS). 邻苯二胺/亚甲基蓝双探针检测结果表明, Fe-PpIX可催化内源性H2O2发生类Fenton反应生成羟基自由基, 从而触发化学动力治疗. 采用L929和4T1细胞进行了噻唑蓝(MTT)实验, 结果显示Fe-PpIX具有良好的生物相容性. 经光/声/化学协同治疗后, 4T1肿瘤细胞的存活率显著下降(最低15.0%), 活/死细胞染色实验进一步证实了此结果. 所制备纳米粒有望实现高效治疗, 为理性设计多模态联合治疗的纳米粒提供了新策略.
Multimodal synergistic therapeutic nanomaterials exhibit significant research value for precision tumor therapy. However, the traditional preparation process is complex and the therapeutic efficacy of synergistic therapy remains suboptimal. In this work, an ultrasonically assisted self-assembly strategy is developed to synthesize iron- protoporphyrin IX(PpIX) coordination particle(Fe-PpIX). This approach achieves a three-in-one multimodal tumor therapy through photodynamic/sonodynamic/chemodynamic therapy. The prepared nanoparticles were characterized by the transmission electron microscope(TEM), X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared spectroscopy(FTIR), which indicated that Fe was coordinated with PpIX by carboxyl groups. The quantitative evaluation of fluorescence spectroscopy demonstrated the efficient ROS generation of Fe-PpIX under photody namic and sonodynamic conditions. The o-phenylenediamine/methylene blue dual probes further revealed that Fe-PpIX can catalyze the H2O2, which produces hydroxyl radicals by Fenton-like reaction. The MTT assays of L929 and 4T1 cells indicate that Fe-PpIX possesses good biocompatibility. After light/sound synergistic therapy, the survival rate of 4T1 tumor cells decreased significantly, and the survival rate decreased to the lowest(15.0%). This was further confirmed by live/dead cell staining experiments. The developed nanoparticles exhibit a valuable potential for achieving highly efficient therapy, providing a promising strategy for the rational design of multimodal therapeutic nanomaterials.
自组装 / 多模态协同治疗 / 原卟啉PpIX / 光动力 / 声动力
Self-assembly / Multimodal synergistic therapy / Protoporphyrin IX / Photodynamic / Sonodynamic
| [1] |
Gong Z., Cheng C., Sun C. N., Cheng X. L., J. Exp. Clin. Canc. Res., 2025, 44(1), 138 |
| [2] |
Cao M. Y., Xing X. E., Shen X. T., Ouyang J., Na N., Chem. Res. Chinese Universities, 2024, 40(2), 202—212 |
| [3] |
Guo Q. Y., Tang Y. N., Wang S. M., Xia X. H., Redox Biol., 2025, 80, 103515 |
| [4] |
An X. Q., Yu W. F., Liu J. B., Tang D. L., Yang L., Chen X., Cell Death Dis., 2024, 15(8), 556 |
| [5] |
Li G. Y., Wang C., Jin B. H., Sun T., Sun K., Wang S., Fan Z., Cell Death Discov., 2024, 10(1), 466 |
| [6] |
Cui X., Li X., Peng C., Qiu Y. H., Shi Y., Liu Y. M., Fei J. F., ACS Nano, 2023, 17(21), 20776—20803 |
| [7] |
Sun B. W., Rahmat J. N. B., Zhang Y., Biomaterials, 2022, 291, 121875 |
| [8] |
Li Y. J., Chen W., Kang Y., Zhen X. Y., Zhou Z. M., Liu C., Chen S. Y., Huang X. A., Liu H. J., Koo S., Kong N., Ji X. Y., Xie T., Tao W., Nat. Commun., 2023, 14(1), 6973 |
| [9] |
Pang E., Tang Y. Y., Zhao S. J., Cheng Q., Wang C., Chen J. M., Lan M. H., Chem. J. Chinese Universities, 2025, 46(6), 20240489 |
| [10] |
庞娥, 唐垣钰, 赵少静, 程强, 王晨, 陈健敏, 蓝敏焕. 高等学校化学学报. 2025, 46(6), 20240489 |
| [11] |
Wen S. W., Zhang W. Y., Yang J. L., Zhou Z. J., Xiang Q., Dong H. F., ACS Nano, 2024, 18(34), 23672—23683 |
| [12] |
Wang L., Liu Y. Y., Sun J., Su J. J., Feng J., Miao L., Zhao W. J., Zhang H. J., Liu K., ACS Nano, 2025, 19(29), 26791—26804 |
| [13] |
Zheng N. N., Hu X., Yan L., Ding L. Y., Feng J., Li D., Ji T., Ai F. J., Yu K., Hu J. Q., Nano Lett., 2024, 24(20), 6165—6173 |
| [14] |
Guo W., Wang Y. M., Zhang K., Dai X. G., Qiao Z. Z., Liu Z. W., Yu B. R., Zhao N. A., Xu F. J., Chem. Mater., 2023, 35(17), 6853—6864 |
| [15] |
Tajwar M. A., Ali N., Zhang X. R., Jabeen R., Liu Y. T., Shangguan D. H., Qi L., Chem. Res. Chinese Universities, 2024, 40(6), 1290—1297 |
| [16] |
Sun Y., Cao J., Wang X., Zhang C., Luo J. L., Zeng Y. Q., Zhang C., Li Q. Y., Zhang Y., Xu W., Zhang T., Huang P. T., ACS Appl. Mater. Interfaces., 2021, 13(32), 38114—38126 |
| [17] |
Zheng H. J., Lin H. M., Ke Y., Ma Y. W., Ge S. F., Yang F., Ruan J., Jia R. B., Adv. Healthc. Mater., 2025, 14(14), 2501339 |
| [18] |
Li Y. F., Han S. C., Zhao Y., Yan J. Q., Luo K., Li F. S., He B., Sun Y., Li F., Liang Y., Small, 2024, 21(5), 2404299 |
| [19] |
Xu P. J., Wen C. C., Gao C. J., Liu H. H., Li Y. S., Guo X. L., Shen X. C., Liang H., ACS Nano, 2023, 18(1), 713—727 |
| [20] |
Dibona⁃Villanueva L., Fuentealba D., J. Agric. Food Chem., 2022, 70(30), 9276—9282 |
| [21] |
Li X., He G., Jin H., Xiang X. Y., Li D., Peng R. M., Tao J., Li X. P., Wang K. Y., Luo Y., Liu X. A., Adv. Sci., 2024, 12(5), 2407609 |
| [22] |
Shan H. R., Wang X. Q., Wei Q. H., Dai H. L., Chen X. F., Photonics Res., 2024, 12(5), 1024—1035 |
| [23] |
Gao H. Y., Cao Z. P., Liu H. H., Chen L. J., Bai Y., Wu Q. X., Yu X., Wei W., Wang M. Y., Theranostics, 2023, 13(6), 1974—2014 |
| [24] |
He K., Ding B. B., Ma P. A., Lin J., Chem. J. Chinese Universities, 2025, 46(1), 20230525 |
| [25] |
何扩, 丁彬彬, 马平安, 林君. 高等学校化学学报, 2025, 46(1), 20230525 |
| [26] |
Vaitsis C., Sourkouni G., Argirusis C., Ultrason. Sonochem., 2019, 52, 106—119 |
| [27] |
Zhang Q., Yan S. G., Yan X. T., Lv Y., Sci. Total Environ., 2023, 902, 165944 |
| [28] |
Ogura Y., Taniya K., Horie T., Tung K. L., Nishiyama S., Komoda Y., Ohmura N., Ultrason. Sonochem., 2023, 96, 106443 |
| [29] |
Sun H., Li L. K., Guo R. H., Wang Z., Guo Y. H., Li Z. L., Song F. L., Chem. Sci., 2024, 15(3), 940—952 |
| [30] |
Ma D., Huang X., Zhang Y., Wang L., Wang B., Nano Res., 2023, 16(5), 7906—7925 |
| [31] |
Papageorgiou S. K., Kouvelos E. P., Favvas E. P., Sapalidis A. A., Romanos G. E., Katsaros F. K., Carbohydr. Res., 2010, 345(4), 469—473 |
| [32] |
Harada Y., Murayama Y., Takamatsu T., Otsuji E., Tanaka H., Int. J. Mol. Sci., 2022, 23(12), 6478 |
| [33] |
Yan L., Miller J., Yuan M., Liu J. F., Busch T. M., Tsourkas A., Cheng Z. L., Biomacromolecules, 2017, 18(6), 1836—1844 |
| [34] |
Bark K. M., Yang J. I., Lee H. S., Lee J. B., Park C. H., Park H. R., B. Korean Chem. Soc., 2010, 31(6), 1633—1637 |
| [35] |
Moscoso F. G., Rodriguez⁃Albelo L. M., Ruiz⁃Salvador A. R., Lopes⁃Costa T., Pedrosa J. M., Mater. Today Chem., 2023, 28, 101366 |
广西药物分子发现与成药性优化重点实验室开放课题(GKLDDO-2024-05)
湖北省自然科学基金(2024AFB059)
三峡大学高层次人才科研启动及平台建设经费(拔尖人才)(8220309)
/
| 〈 |
|
〉 |