核受体FXR与天然产物激动剂Sarmentol H的作用机制
Interaction Mechanism Between FXR and Its Natural Product Agonist SarmentolH
近期研究发现, 从植物垂盆草分离得到的天然产物Sarmentol H(SMH)是一种具有新颖骨架结构的法尼醇X受体(FXR)激动剂, 表现出良好的体内外活性. 然而, SMH与FXR的具体作用机制尚不清楚. 本文综合运用分子对接、 分子动力学模拟和结合自由能计算等方法, 解析了SMH与FXR之间的作用模式. 通过比较结构动力学和结合自由能, 确定了SMH与FXR的最优结合模式, 并识别出在SMH结合过程中起关键作用的氨基酸残基.
Recent studies have identified Sarmentol H(SMH), a natural product isolated from Sedum sarmentosum Bunge, as a novel Farnesoid X receptor(FXR) agonist with a unique scaffold structure and promising invitro and invivo activities. However, the precise interaction mechanism between SMH and FXR remains unclear. In this study, an integrated computational approach combining molecular docking, molecular dynamics simulations, and binding free energy calculations was employed to elucidate the binding mode between SMH and FXR in detail. By comparing structural dynamics and binding free energetics, the optimal binding mode of SMH with FXR was identified, and the key amino acid residues critical for SMH recognition and binding were pinpointed.
法尼醇X受体 / Sarmentol H / 作用机制
Farnesoid X receptor / Sarmentol H / Interaction mechanism
| [1] |
Makishima M., Okamoto A. Y., Repa J. J., Tu H., Learned R. M., Luk A., Hull M. V., Lustig K. D., Mangelsdorf D. J., Shan B., Science, 1999, 284(5418), 1362—1365 |
| [2] |
Parks D. J., Blanchard S. G., Bledsoe R. K., Chandra G., Consler T. G., Kliewer S. A., Stimmel J. B., Willson T. M., Zavacki A. M., Moore D. D., Lehmann J. M., Science, 1999, 284(5418), 1365—1368 |
| [3] |
Wang H. B., Chen J., Hollister K., Sowers L. C., Forman B. M., Mol. Cell, 1999, 3(5), 543—553 |
| [4] |
Fiorucci S., Distrutti E., Carino A., Zampella A., Biagioli M., Prog. Lipid Res., 2021, 82, 101094 |
| [5] |
Fiorucci S., Biagioli M., Baldoni M., Ricci P., Sepe V., Zampella A., Distrutti E., Expert Opin. Drug Dis., 2021, 16(10), 1193—1208 |
| [6] |
Panzitt K., Zollner G., Marschall H., Wagner M., Mol. Cell. Endocrinol., 2022, 552, 111678 |
| [7] |
Adorini L., Trauner M., J. Hepatol., 2023, 79(5), 1317—1331 |
| [8] |
Fang Y. Y., Hegazy L., Finck B. N., Elgendy B., J. Med. Chem., 2021, 64(24), 17545—17571 |
| [9] |
Xu Y. P., J. Med. Chem., 2016, 59(14), 6553—6579 |
| [10] |
Mullard A., Nat. Rev. Drug Discov., 2020, 19(8), 501—501 |
| [11] |
Wang K., Zhang Y. C., Wang G. J., Hao H. P., Wang H., Med. Res. Rev., 2024, 44(2), 568— 586 |
| [12] |
Li Y., Xu T. T., Zhao Y., Zhang H., Liu Z. S., Wang H., Huang C. Y., Shu Z. H., Gao L. X., Xie R. R., Jiao T. Y., Zhang D., Zhang D., Liang X. W., Zang Y., Sun Y. L., Liu H., Li J., Zhou Y., J. Med. Chem., 2024, 67(7), 5642—5661 |
| [13] |
Yin Y. M., Wang M. G., Gu W. J., Chen L. L., Biochem. Pharmacol., 2021, 186, 114430 |
| [14] |
Liu Z. X., Chen L., Chen M. Y., Linghu L., Liao Z. H., Chen M., Wang G. W., Phytomedicine, 2024, 130, 155759 |
| [15] |
Gaieb Z., Liu S., Gathiaka S., Chiu M., Yang H. W., Shao C. H., Feher V. A., Walters W. P., Kuhn B., Rudolph M. G., Burley S. K., Gilson M. K., Amaro R. E., J. Comput. Aided Mol. Des., 2018, 32(1), 1—20 |
| [16] |
Friesner R. A., Banks J. L., Murphy R. B., Halgren T. A., Klicic J. J., Mainz D. T., Repasky M. P., Knoll E. H., Shelley M., Perry J. K., Shaw D. E., Francis P., Shenkin P. S., J. Med. Chem., 2004, 47(7), 1739—1749 |
| [17] |
Case D. A., Cheatham T. E. III, Darden T., Gohlke H., Luo R., Merz K. M. Jr., Onufriev A., Simmerling C., Wang B., Woods R. J., J. Comput. Chem., 2005, 26(16), 1668—1688 |
| [18] |
Lee C., Yang W., Parr, R. G., Phys. Rev. B, 1988, 37(2), 785—789 |
| [19] |
Wang J. M., Cieplak P., Kollman P. A., J. Comput. Chem., 2000, 21(12), 1049—1074 |
| [20] |
Wang J. M., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A., J. Comput. Chem., 2004, 25(9), 1157—1174 |
| [21] |
Salomon-Ferrer R., Case D. A., Walker R. C., WIREs Comput. Mol. Sci., 2013, 3(2), 198—210 |
| [22] |
Olsson M. H. M., Sondergaard C. R., Rostkowski M., Jensen J. H., J. Chem. Theory Comput., 2011, 7(2), 525—537 |
| [23] |
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R., Klein M. L., J. Chem. Phys., 1983, 79(2), 926—935 |
| [24] |
Maier J. A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K. E., Simmerling C., J. Chem. Theory Comput., 2015, 11(8), 3696—3713 |
| [25] |
Zhang L., Chen Y. Q., Li W. H., Chem. Res. Chinese Universities, 2025, 41(1), 146—154 |
| [26] |
Chen Y., Li J. H., Wu Z. R., Liu G. X., Li H. L., Tang Y., Li W. H., J. Chem. Inf. Model., 2020, 60(3), 1540—1550 |
| [27] |
Li W. H., Fu J., Cheng F. X., Zheng M. Y., Zhang J., Liu G. X., Tang Y., J. Chem. Inf. Model., 2012, 52(11), 3043—3052 |
| [28] |
Izaguirre J. A., Catarello D. P., Wozniak J. M., Skeel R. D., J. Chem. Phys., 2001, 114(5), 2090—2098 |
| [29] |
Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R., J. Chem. Phys., 1984, 81(8), 3684—3690 |
| [30] |
Elber R., Ruymgaart A. P., Hess B., Eur. Phys. J. Spec. Top., 2011, 200(1), 211—223 |
| [31] |
Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L. G., J. Chem. Phys., 1995, 103(19), 8577—8593 |
| [32] |
Roe D. R., Cheatham T. E., J. Chem. Theory Comput., 2013, 9(7), 3084—3095 |
| [33] |
Genheden S., Ryde U., Expert Opin. Drug Discov., 2015, 10(5), 449—461 |
| [34] |
Wang E. C., Sun H. Y., Wang J. M., Wang Z., Liu H., Zhang J. Z. H., Hou T. J., Chem. Rev., 2019, 119(16), 9478—9508 |
| [35] |
Onufriev A., Bashford D., Case D. A., J. Phys. Chem. B, 2000, 104(15), 3712—3720 |
| [36] |
Weiser J., Shenkin P. S., Still W. C., J. Comput. Chem., 1999, 20(2), 217—230 |
| [37] |
Brooks B. R., Janezic D., Karplus M., J. Comput. Chem., 1995, 16(12), 1522—1542 |
| [38] |
Adasme M. F., Linnemann K. L., Bolz S. N., Kaiser F., Salentin S., Haupt V. J., Schroeder M., Nucleic Acids Res., 2021, 49(W1), W530—W534 |
| [39] |
Zhang J. J., Lv L. N., Zhu H. R., Zhang Y., Xu X. D., Long L. X., Fu W., Chem. Res. Chinese Universities, 2024, 40(6), 1201—1211 |
| [40] |
Xue X. L., Wang X., Ye C. H., Gao M. N., Li P., Yu K. Q., Chen G. H., Chem. Res. Chinese Universities, 2024, 40(6), 1298—1310 |
上海市分子影像重点实验室项目(18DZ2260400)
上海健康医学院大学生创新训练计划项目(X202510262133)
/
| 〈 |
|
〉 |