氯化反式丁二烯-异戊二烯共聚橡胶的结构调控
邢宇航 , 王莉 , 赵季若 , 邵华锋 , 贺爱华
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (12) : 131 -138.
氯化反式丁二烯-异戊二烯共聚橡胶的结构调控
Structure Regulation of Chlorinated Trans-1,4-butadiene-co-isoprene Rubber
反式丁二烯-异戊二烯共聚橡胶(TBIR)中可参与氯化反应的结构复杂, 其氯化产物氯化反式丁二烯-异戊二烯共聚橡胶(CTBIR)的橡胶弹性和极性主要取决于分子链中的双键和烯丙基氯两种结构. 本文通过控制氯化反应时间、 温度、 氯气的通入方式以及自由基捕捉剂和紫外光辐照等氯化反应条件, 实现了对CTBIR中双键和烯丙基氯结构的调控. 实验结果表明, 高的起始反应温度可以保留TBIR中的双键含量, 但氯含量降低; 循环通入氯气的方式有利于在获得高氯含量的同时保持较高的双键含量; 氯化反应中加入2,2,6,6-四甲基-1-氧基哌啶(TEMPO)有利于保持CTBIR中的双键含量. CTBIR中烯丙基氯结构的含量可以通过反应温度和时间以及TEMPO的加入量来进行调控. 对氯化反应产物结构的调控可以为橡胶的氯化反应及氯化产物的调控提供依据, 并为CTBIR后续的结构修饰提供可选择的反应位点.
The structure of trans butadiene-isoprene copolymer rubber(TBIR) involved in chlorination reaction is complex, and its derivative, chlorinated trans-1,4-poly(butadiene-co-isoprene) rubber(CTBIR), achieves rubber elasticity and polarity mainly depending on its double bond and allyl chloride structures. This article aims to regulate the double bond and allyl chloride structure in CTBIR by controlling the chlorination reaction conditions, such as chlorination time, temperature, chlorine gas introduction methods, free radical scavengers, and UV irradiation. A high initial reaction temperature preserves the double bond content in CTBIR while reducing its chlorine content. The method of circulating chlorine gas facilitates achieving high chlorine content while maintaining high double bond content. The adding of 2,2,6,6-tetramethylpiperidyl-1-oxyl(TEMPO) is beneficial for maintaining the double bond content in CTBIR. The allyl chloride structure in CTBIR can be regulated by reaction temperature, reaction time and the addition of TEMPO. Regulating the structure of chlorination product provides a basis for the halogenation reaction of rubber. The regulation of halogenation products can provide the selection of reaction sites for the subsequent structural modification of CTBIR.
氯化反应 / 反式丁二烯-异戊二烯共聚橡胶 / 烯丙基氯 / 结构调控 / 分子量
Chlorination / Trans-1,4-poly(butadiene-co-isoprene)rubber / Allyl chlorine / Structure regulation / Molecular weight
| [1] |
Shao H. F., Ren S. T., Wang R. G., He A. H., Polymer, 2020, 186, 122015 |
| [2] |
Li W. T., Nie H. R., Shao H. F., Ren H. C., He A. H., Polymer, 2018, 156, 148—161 |
| [3] |
Liu X. Y., Li W. T., Niu Q. T., Wang R. G., He A. H., Polymer, 2018, 140, 255—268 |
| [4] |
Qian Z. H., Wang S., Zong X., Cai L., He A. H., Chem. J. Chinese Universities, 2023, 44(8), 20230023 |
| [5] |
钱浙濠, 王硕, 宗鑫, 蔡磊, 贺爱华. 高等学校化学学报, 2023, 44(8), 20230023 |
| [6] |
Wu Y. F., Li H. Y., Cai L., He A. H., Chem. J. Chinese Universities, 2020, 41(3), 565—571 |
| [7] |
武营飞,李洪昱,蔡磊,贺爱华. 高等学校化学学报, 2020, 41(3), 565—571 |
| [8] |
Guo Q. R., Shao H. F., He A. H., Chem. J. Chinese Universities, 2020, 41(4), 789—794 |
| [9] |
国钦瑞, 邵华锋, 贺爱华. 高等学校化学学报, 2020, 41(4), 789—794 |
| [10] |
Wang H., Zhang X. P., Nie H. R., Wang R. G., He A. H., Compos. Part A⁃Appl. S., 2019, 116, 197—205 |
| [11] |
Wang H., Song L. Y., Ma Y. S., Wang R. G., He A. H., Acta Polym. Sin., 2018, 3, 419—428 |
| [12] |
Wang H., Zou C., He A. H., Acta Polym. Sin., 2015, 12, 1387—1395 |
| [13] |
Luo S. F., Zhao Y. J., Wang S., Zhou R. C., Yang X., He A. H., Chem. J. Chinese Universities, 2025, 46(8), 20250067 |
| [14] |
罗淑芳, 赵远进, 王硕, 周润川, 杨霞, 贺爱华. 高等学校化学学报, 2025, 46(8), 20250067 |
| [15] |
Radabutra S., Thanawan S., Amornsakchai T., Eur. Polym. J., 2009, 45(7), 2017—2022 |
| [16] |
Cao R. W., Zhao X. Y., Zhao X. Y., Wu X. H., Li X. L., Zhang L. Q., Ind. Eng. Chem. Res., 2019, 58(36), 16645—16653 |
| [17] |
Xue X. H., Liu Y. F., Han X. P., Li G., Wang Z. Y., J. Wuhan Univ. Technol., 2019, 34(1), 201—206 |
| [18] |
Vitiello R., Tesser R., Turco R., Santacesaria E., Compagnone G., Di Serio M., Int. J. Polym. Anal. Charact., 2017, 22(4), 348—360 |
| [19] |
Nihmath A., Ramesan M.T., Polym. Adv. Technol., 2018, 29(8), 2165—2173 |
| [20] |
Yang L., Wang J. C., Luo L. Z., Li S. F., Zhao J. R., Feng Y., J. Appl. Polym. Sci., 2018, 135(48), 46880 |
| [21] |
Tuampoemsab S., Nimpaiboon A., Sakdapipanich J. T., Polym. Test., 2015, 43, 21—26 |
| [22] |
Eskina M. V., Khachaturov A. S., Krentsel L. B., Litmanovich A. D., Eur. Polym. J., 1990, 26(2), 181—188 |
| [23] |
Lenko D., Schlogl S., Kramer R., Kern W., Schaller R., Holzner A., Macromolecular Symposia, 2012, 311(1), 9—17 |
| [24] |
Song X. P., Wang L., Shao H. F., Zhao J. R., He A. H., Polym. Eng. Sci., 2025, 65(3), 1530—1539 |
| [25] |
Brame E. G., J. Polym. Sci. Pol. Chem., 1971, 9(7), 2051—2061 |
| [26] |
Novak I., Harrison L. J., J. Org. Chem., 2004, 69(22), 7628—7634 |
/
| 〈 |
|
〉 |