旋转包覆法构筑高反射低导热型HGM@TiO2@ZnO核-壳-壳材料
齐文甲 , 赵开庆 , 吴刚 , 吾麦尔·亚森null , 童刚生
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (11) : 1 -10.
旋转包覆法构筑高反射低导热型HGM@TiO2@ZnO核-壳-壳材料
Fabrication of High-reflectance and Low-thermal-conductivity HGM@TiO₂@ZnO Core-shell-shell Material via Rotational Coating
以空心玻璃微球(HGM)为基体, 通过旋转包覆工艺和两步非均相沉淀法在其表面依次均匀包覆鸡蛋壳状TiO2与纳米针状ZnO, 构建了一种高反射低导热型核-壳-壳材料HGM@TiO2@ZnO. 研究结果表明, HGM@TiO2@ZnO具有的空心核结构减少了热量传递效率, 高、 低折射率双壳层结构对光产生了多级反射和散射, 且纳米针状ZnO之间形成了空腔结构, 进一步降低了HGM@TiO2@ZnO的导热系数, 实现了“反射-隔热”双重协同作用. HGM@TiO2@ZnO材料在可见-近红外(380~2500 nm)波段的太阳光平均反射率高达88.64%, 较HGM、 HGM@TiO2及物理共混材料(HGM&TiO2&ZnO)分别提升了25.6%, 6.2%和10.0%. 向丙烯酸树脂基体中加入体积分数40%的HGM@TiO2@ZnO时, 所得涂层的可见-近红外波段太阳光平均反射率高达72.86%, 导热系数低至0.08 W·m-1·K-1, 较添加相同体积分数HGM的丙烯酸树脂基涂层的反射率提升5.4%, 导热系数降低34%. 本文揭示了核-壳-壳层级结构对光热性能的协同调控机制, 为开发高效热反射隔热功能涂料提供了理论支撑与材料基础.
Hollow glass microspheres(HGM) was utilized as the substrate and sequentially was coated with eggshell-like TiO₂ and needle-like nano-ZnO through a rotational coating process and a two-step heterogeneous precipitation method, constructing a high-reflectance, low-thermal-conductivity core-shell-shell material HGM@TiO2@ZnO. Research demonstrates that the obtained HGM@TiO₂@ZnO exhibits a hollow core structure that reduces heat transfer efficiency. The dual-shell structure, comprising high and low refractive index layers, induces multi-level reflection and scattering of light, while the cavity structures formed between the needle-like nano-ZnO further decrease the thermal conductivity of HGM@TiO₂@ZnO, achieving a dual synergistic effect of "reflection-thermal insulation". Results indicate that the HGM@TiO₂@ZnO material achieves an average solar reflectance up to 88.64% in the visible-near-infrared(380—2500 nm) range, representing improvements of 25.6%, 6.2%, and 10.0% compared to HGM, HGM@TiO₂, and physically blended material HGM&TiO₂&ZnO, respectively. When HGM@TiO₂@ZnO was added to an acrylic resin matrix at volume fraction of 40%, the resulting coating exhibited an average solar reflectance of 72.86% and a thermal conductivity as low as 0.08 W·m-1·K-1. Compared to coatings with the same volume fraction of HGM added to the acrylic resin, the reflectance increased by 5.4%, while the thermal conductivity decreased by 34%. Thus, this study elucidates the synergistic regulation mechanism of the core-shell-shell hierarchical structure on photothermal performance, providing theoretical support and material foundations for the development of high-efficiency thermal-reflective and insulating functional coatings.
空心玻璃微球 / 核壳材料 / 太阳光反射率 / 导热系数 / 涂料
Hollow glass microsphere / Core-shell material / Solar reflectance / Thermal conductivity / Coating
| [1] |
Sand M., Skeie R. B., Sandstad M., Krishnan S., Myhre G., Bryant H., Derwent R., Hauglustaine D., Paulot F., Prather M., Stevenson D., Commun. Earth. Environ., 2023, 4, 1—12 |
| [2] |
Frolicher T. L., Fischer E. M., Gruber N., Nature, 2018, 560(7718), 360—364 |
| [3] |
Liu J. C., Yin L., Zhang B. L., J. Shandong Norm. U.(Nat. Sci. Ed.), 2025, 40(1), 21—35 |
| [4] |
刘嘉晨, 尹乐, 张宝雷. 山东师范大学学报(自然科学版), 2025, 40(1), 21—35 |
| [5] |
Meng F. C., Ren G. Y., Guo J., Zhang L., Zhang R. X., Prog. Geogr., 2020, 39(8), 1296—1307 |
| [6] |
孟凡超, 任国玉, 郭军, 张雷, 张瑞雪. 地理科学进展, 2020, 39(8), 1296—1307 |
| [7] |
Gu J., Wu H., Liu J., Ding Y., Huang G., Xu X., Renew. Sust. Energ. Rev., 2024, 189, 113972 |
| [8] |
Lin K., Chen S., Zeng Y., Ho T. C., Zhu Y., Wang X., Liu F., Chao C. Y., Wang Z., Tso C. Y., Science, 2023, 382, 691—697 |
| [9] |
Doulos L., Santamouris M., Livada I., Sol. Energy, 2004, 77, 231—249 |
| [10] |
Kim H. J., Kim D. S., Mun H., Jae H., Dong K., Compos. Commun., 2020, 22, 100432 |
| [11] |
Anirudh S., Jayalakshmi C. G., Anand A., Kandasubramanian B., Lsmail S., Eur. Polym. J., 2022, 171, 111163 |
| [12] |
Kuperman A. M., Turusov R. A., Gorenberg A. J., Solodilov V. I., Korokhin R. A., Gorbatkina Y. A., Lvanova⁃Mumzhieva V. G., Zhuravleva O. A., Baikov A. V., Mech. Compos. Mater., 2015, 50(6), 705—716 |
| [13] |
Zheng S., Liu T., Jiang G., Wen D., Dai T., Yang G., Gu H., Fang C., Constr. Build. Mater., 2024, 411, 134703 |
| [14] |
Lin D. Y., Duan P., Yang W. T., Liu Y. F., Pan Q. H., Inorg. Chem. Front., 2020, 7, 1643—1650 |
| [15] |
Bao Y., Guo R., Ma J., ACS Appl. Mater. Inter., 2020, 12, 24250—24261 |
| [16] |
Hu J., Xu D., Li J., Wang K., Bi Z., Xu G., Xu X., Nano, 2017, 12, 1750080 |
| [17] |
Duran⁃Toscano A. A., Díaz de León⁃Hernández J. N., Fuentes⁃Moyado S., Medina⁃Martínez J. A., Hernández⁃Torres J., García⁃González L., Martínez⁃Castillo J., Guzmán⁃Navarro G., Domínguez⁃Nicolás S. M., Hernández⁃Quiroz T., Nano⁃Struct. Nano⁃Objects, 2024, 38, 101138 |
| [18] |
Zhang R. S., Zheng W., He F., Xiong X. W., Paint Coat. Ind., 2014, 44(1), 75—79 |
| [19] |
张瑞殊, 郑伟, 何方, 熊先支. 涂料工业, 2014, 44(1), 75—79 |
| [20] |
Luo S. X., Yang Y. Q., Zheng Z. L., Yang F. H., New Build. Mater., 1999, (10), 33—34 |
| [21] |
罗淑湘, 杨永起, 郑自立, 杨飞华. 新型建筑材料, 1999, (10), 33—34 |
| [22] |
Wu J., Ke K., Qin N., Lin E., Kang Z., Bao D., J. Colloid Interf. Sci., 2023, 636, 167—175 |
| [23] |
Li Z. Z., Chen Q. Y., Song Y., Zhu B., Zhu J., Adv. Mater. Technol., 2020, 5(5), 1901007 |
| [24] |
Wang X. H., Xue Y. Y., Liu C. S., World Build. Mater., 2003, 5, 42—46 |
| [25] |
王学华, 薛亦渝, 刘长生. 建材世界, 2003, 5, 42—46 |
| [26] |
Wang F. X., Chen Z. Y., Yang W. T., Liu L. J., Ren G. J., Liu Y. F., Pan Q. H., Chem. J. Chinese Universities, 2019, 40(1), 24—29 |
| [27] |
王芙香, 陈子玉, 杨玮婷, 刘丽娟, 任国建, 刘艳凤, 潘勤鹤. 高等学校化学学报, 2019, 40(1), 24—29 |
| [28] |
Wang D. M., LYU J., Chen C. Q., Wu Y. C., Zheng Z. X., Phys. Test. Chem. Anal.(Part A: Phys. Test.), 2006, 42(1), 19—22 |
| [29] |
汪冬梅, 吕珺, 陈长奇, 吴玉程, 郑治祥, 理化检验(物理分册), 2006, 42(1), 19—22 |
| [30] |
Thakur A., Hamamoto T., Ikeda T., Chammingkwan P., Taniike T., Appl. Catal. A⁃Gen., 2020, 595, 117508 |
| [31] |
Veluswamy P., Sathiyamoorthy S., Chowdary K. H., Muthusamy O., Krishnamoorthy K., Takeuchi T., Ikeda H., J. Alloy. Compd., 2017, 695, 888—894 |
| [32] |
Zhou G. D., Chen S. H., Huang J. H., Zhao X. K., Zhang H., Mater. Sci. Technol., 2012, 2, 1—6 |
| [33] |
周国栋, 陈树海, 黄继华, 赵兴科, 张华. 材料科学与工艺, 2012, 2, 1—6 |
| [34] |
Ren J., Guo Q., Chen Z. W., Building Energy, 2022, 50(4), 1—5 |
| [35] |
任俊, 郭清, 陈卓武. 建筑节能(中英文), 2022, 50(4), 1—5 |
| [36] |
Yang L. L., Wu Y. D., Huang Z. M., Zheng Y. H., Xie S. B., Paint Coat. Ind., 2024, 54(11), 42—49 |
| [37] |
杨丽丽, 武娅娣, 黄志民, 郑益华, 谢松伯. 涂料工业, 2024, 54(11), 42—49 |
| [38] |
Zhang Z., Gao J., Li X. G., New Building Materials, 2018, 45(12), 76—81 |
| [39] |
张志, 高瑾, 李晓刚. 新型建筑材料, 2018, 45(12), 76—81 |
| [40] |
Wang Y., Jiang J. S., Zheng H. Z., Guan Z., Pan X. W., Paint Coat. Ind., 2022, 52(2), 84—88 |
| [41] |
王燕, 姜经帅, 郑晗祯, 管洲, 潘秀伟. 涂料工业, 2022, 52(2), 84—88 |
| [42] |
Kim G. S., Hyun S. H., J. Non⁃Cryst. Solids, 2003, 320(1—3), 125—132 |
| [43] |
Ye C., Wen X. F., Lan J. L., Cai Z. Q., Pi P. H., Xu S. P., Qian Y., Pigment & Resin Technology, 2016, 45(1), 45—51 |
| [44] |
Zulhelmi A. A. H., Norhayati A., Muhamad A. M. Y., Prog. Org. Coat., 2025, 201, 109—114 |
| [45] |
Bilong J., Nyobe E. N., Hona J., Pemha E., Prog. Electromagn. Res., 2012, 42, 425—453 |
| [46] |
Jiménez J. A., Upadhyay D. R.,Amesimenu R., Khanal R., Ceram. Int., 2025, 51, 4904—4917 |
| [47] |
Bardalen E., Bouchouri A., Akram M. N., Nguyen H. V., Nanomaterials, 2024, 14(1), 20 |
| [48] |
Woo H. J., Han J., Ji S., Shin B. G., Park S. H., Lee S. G., Lee C. W., Hwang E., Kim D. S., Choi S., ACS Nano, 2024, 18(19), 12333—12340 |
| [49] |
Ren J., Zong H., Han Y., Liu T., Zhang S., Xu Q., Wu S., Chinese Chem. Lett., 2024, 35, 109350 |
| [50] |
Wang P., Liao B., An Z., Yan K. Q., Zhang J., Int. J. Heat Mass Tran., 2018, 129, 591—598 |
| [51] |
Wang J. T., Lu G. Z., Paint Coat. Ind., 2004, 34(10), 18—19 |
| [52] |
王金台, 路国忠. 涂料工业, 2004, 34(10), 18—19 |
上海市学术/技术研究带头人计划(23XD1431800)
上海高校青年教师资助培养计划项目(0234-A1-0100-25-QP034)
/
| 〈 |
|
〉 |