糠酸莫米松的溶剂合物和多晶型研究
Study on Solvates and Polymorphs of Mometasone Furoate
糠酸莫米松(MF)是一种强效的合成皮质类固醇, 广泛应用于哮喘、 皮肤炎症及瘙痒性疾病的治疗. 本文发现了MF的6种溶剂合物(乙腈、 甲醇、 丙酮、 二氯甲烷、 乙酸乙酯和四氢呋喃溶剂合物), 并利用X射线单晶衍射解析了乙腈溶剂合物和二氯甲烷溶剂合物的晶体结构. 分析结果表明, 乙腈溶剂合物与已知的晶型1同属于P212121空间群, 但其PXRD谱图存在显著差异, 二氯甲烷溶剂合物则属于一个不同于无水晶型1和水合物的新空间群. MF分子形状不规则, 存在2个较大且可旋转的基团, 在晶体堆积过程中可以形成尺寸可调的较大空腔结构, 使其能够容纳不同尺寸的溶剂分子, 从而形成多种溶剂合物. 通过PXRD研究了溶剂合物在不同环境下的稳定性及其晶型转变, 发现二氯甲烷、 乙腈和乙酸乙酯溶剂合物在室温下不稳定, 会自发脱溶剂并转变为一种新的亚稳晶型, 而四氢呋喃、 丙酮和甲醇溶剂合物在室温下相对稳定. 这些溶剂合物和新的亚稳晶型在加热后均转化成晶型1.
Mometasone furoate(MF) is a potent synthetic corticosteroid widely used in the treatment of asthma, skin inflammation and pruritic diseases. This study discovered six solvates of MF(acetonitrile, methanol, acetone, dichloromethane, ethyl acetate and tetrahydrofuran solvates), and the crystal structure of the acetonitrile solvate and dichloromethane solvate were successfully resolved using single-crystal X-ray diffraction. Crystal structure analysis showed that the acetonitrile solvate belongs to the same P212121 space group as the known Form 1, but its PXRD pattern differs significantly. The dichloromethane solvate belongs to a new space group different from the anhydrous Form 1 and the hydrate. The MF molecule has an irregular shape with two large rotatable groups, which can form large cavity structures with adjustable sizes during crystal packing, enabling it to accommodate solvent molecules of different sizes and thus form various solvates. The stability of the solvates under different environments and their polymorphic transformations were studied by PXRD. The solvates of dichloromethane, acetonitrile, and ethyl acetate were unstable at room temperature, spontaneously desolvating and converting into a new metastable form, while the solvates of tetrahydrofuran, acetone, and methanol were relatively stable at room temperature. All these solvates and the new metastable forms converted to Form 1 upon heating.
Mometasone furoate / Polymorph / Solvate
| [1] |
Rodríguez⁃Spong B., Price C. P., Jayasankar A., Matzger A. J., Rodríguez⁃Hornedo N., Adv. Drug Deliv. Rev., 2004, 56(3), 241—274 |
| [2] |
Klitou P., Rosbottom I., Simone E., Cryst. Growth Des., 2019, 19(8), 4774—4783 |
| [3] |
Yang J. X., Hu C. H. T., Shtukenberg A. G., Yin Q. X., Kahr B., CrystEngComm, 2018, 20(10), 1383—1389 |
| [4] |
Takebayashi Y., Sue K., Furuya T., Yoda S., Cryst. Growth Des., 2021, 21(5), 2868—2875 |
| [5] |
Allu S., Garai A., Chernyshev V. V., Nangia A. K., Cryst. Growth Des., 2022, 22(7), 4165—4181 |
| [6] |
Duggirala N. K., Schmidt H. L. F., Lei Z. H., Zaworotko M. J., Krzyzaniak J. F., Arora K. K., Mol. Pharm., 2018, 15(5), 1901—1908 |
| [7] |
Rekis T., Berzins A., Dzabijeva D., Nakurte I., Orola L., Actins A., Cryst. Growth Des., 2017, 17(4), 1814—1823 |
| [8] |
Hilfiker R., Polymorphism: in the Pharmaceutical Industry,Wiley-VCH, New Jersey, 2006, 1—30 |
| [9] |
Boothroyd S., Kerridge A., Broo A., Buttar D., Anwar J., Cryst., Growth Des., 2018, 18(3), 1903—1908 |
| [10] |
Douillet J., Stevenson N., Lee M., Mallet F., Ward R., Aspin P., Dennehy D. R., Camus L., J. Cryst. Growth, 2012, 342(1), 2—8 |
| [11] |
Petit S., Mallet F., Petit M. N., Coquerel G., J. Therm. Anal. Calorim., 2007, 90(1), 39—47 |
| [12] |
Zhang G. S., Xiao X. Y., Zhang L. F., Ren G. L., Zhang S. Q., Cryst. Growth Des., 2019, 19(2), 768—779 |
| [13] |
Liu Y., Wang Y. L., Huang X., Li X., Zong S. Y., Wang N., Hao H. X., Cryst. Growth Des., 2022, 22(2), 1283—1291 |
| [14] |
Nowak M., Dyba A. J., Janczak J., Morritt A., Fábián L., Karolewicz B., Khimyak Y. Z., Braun D. E., Nartowski K. P., Mol. Pharm., 2022, 19(2), 456—471 |
| [15] |
Weiss C., McLoughlin P., Manesiotis P., Redington W., Cathcart H., Cryst. Growth Des., 2018, 18(10), 5832—5844 |
| [16] |
Jia L. H., Zhang S. H., Yang W. C., Bao Y., Hou B. H., Zhou L., Yin Q. X., Cryst. Growth Des., 2021, 21(7), 3677—3688 |
| [17] |
Spada F., Barnes T. M., Greive K. A., Australas. J. Dermatol., 2018, 59(3), E168—E174 |
| [18] |
Hintschich C. A., Dietz M., Haehner A., Hummel T., Life⁃Basel, 2022, 12(10), 1483 |
| [19] |
Weinstein C. L. J., Ryan N., Shekar T., Gates D., Lane S. J., Agache I., Nathan R. A., J. Allergy Clin. Immunol., 2019, 143(4), 1395—1402 |
| [20] |
Chen X. M., Carillo M., Haltiwanger R. C., Bradley P., J. Pharm. Sci., 2005, 94(11), 2496—2509 |
| [21] |
Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H., J. Appl Crystallogr., 2009, 42, 339—341 |
| [22] |
Sheldrick G. M., Acta Crystallogr. C, 2015, 71, 3—8 |
| [23] |
Macrae C. F., Bruno I. J., Chisholm J. A., Edgington P. R., McCabe P., Pidcock E., Rodriguez⁃Monge L., Taylor R., van de Streek J., Wood P. A., J. Appl. Crystallogr., 2008, 41, 466—470 |
| [24] |
Liu Q., Liu M. Y., Dong S. Y., Wang X. Z., He Y. L., Chem. J. Chinese Universities, 2024, 45(1), 20230400 |
| [25] |
刘奇, 刘沫毅, 董思雨, 王学重, 何运良. 高等学校化学学报, 2024, 45(1), 20230400 |
| [26] |
Shi Z. P., Ren G. B., Qi M. H., Li Z., Xu X. Y., CrystEngComm, 2020, 22(22), 3863—3870 |
| [27] |
Cruz⁃Cabeza A. J., Bernstein J., Chem. Rev., 2014, 114(4), 2170—2192 |
| [28] |
Lu T., Chen F. W., J. Comput. Chem., 2012, 33(5), 580—592 |
| [29] |
Lu N., Miao C., Lan X. Z., Chem. Res. Chinese Universities, 2022, 39(2), 276—282 |
| [30] |
Neese F., WIREs Comput. Mol. Sci., 2018, 8(1), e1327 |
| [31] |
Lu T., Chen F. W., J. Mol. Graph. Model., 2012, 38, 314—323 |
/
| 〈 |
|
〉 |