氢氟酸体系锰杂质络合机制: 基于DFT的配位结构与反应路径解析
田阳 , 郭其景 , 杨华春 , 刘海霞 , 薛峰峰 , 易浩 , 宋少先
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (12) : 97 -105.
氢氟酸体系锰杂质络合机制: 基于DFT的配位结构与反应路径解析
Complexation Mechanism of Manganese Impurities in Hydrofluoric Acid System: DFT-based Ligand Structure and Reaction Pathway Analysis
针对电子级氢氟酸中痕量杂质反应机理不明晰的问题, 以氟锰酸盐类金属络合物为研究对象, 通过 密度泛函理论(DFT)计算, 研究了氢氟酸体系中痕量杂质Mn与其它金属杂质离子(以Na+, Ca2+, Al3+为典 型的一、 二、 三价杂质离子)的反应路径, 结合静电荷分布、 差分电荷密度及结合能计算等手段, 揭示了反应产物(AlMnF8, CaMnF6, NaMnF6)的稳定性及其与氢氟酸(HF)分离的潜力. 结果表明, Al3+与Mn反应生成的AlMnF8具有最低的体系总能量(-30.878 eV), 结构最稳定; 对结合能的分析进一步证实, AlMnF8与HF的结合能绝对 值(0.488 eV)低于NaMnF6(0.758 eV)和CaMnF6(0.798 eV), 表明其在HF溶液中更易通过物理分离方式脱除. 为电子级氢氟酸中痕量锰络合物的高效去除提供了理论依据.
Aiming to address the unclear reaction mechanisms of trace impurities in electron-grade hydrofluoric acid, this study focuses on fluoromanganate-like metal complexes. The reaction pathways of trace impurity manganese(Mn) and other metal impurity ions(sodium [Na+], calcium [Ca2+], and aluminum [Al3+], representing typical mono-, di-, and tri-valent impurity ions) within the hydrofluoric acid system were investigated through density functional theory(DFT) calculations. By DFT combined with analyses of electrostatic charge distributions, differential charge density and binding energy calculations, the stability of the reaction products(AlMnF8, CaMnF6, NaMnF6) and their potential for separation from hydrofluoric acid(HF) were revealed. The results show that AlMnF8, generated by the reaction of Al3+ with Mn, has the lowest total system energy(-30.878 eV) and the most stable structure; the binding energy analysis further confirms that the absolute value of the binding energy of AlMnF8 with HF(0.488 eV) is lower than that of NaMnF6(0.758 eV) and CaMnF6(0.798 eV), which suggests that it can be more easily detached from HF solution by physical separation. This study provides a theoretical basis for the efficient removal of trace manganese complexes in electronic grade HF.
电子级氢氟酸 / 密度泛函理论计算 / 氟锰酸盐 / 痕量杂质去除
Electronic grade hydrofluoric acid / Density functional theory calculation / Fluoromanganate / Trace impurity removal
| [1] |
Liu F., Qiu Z. J., Yin F., Jiang Y. M., S P & Bmh Related Engineering, 2012, (1), 44—48 |
| [2] |
刘飞, 邱祖军, 尹峰, 蒋月明. 硫磷设计与粉体工程, 2012, (1), 44—48 |
| [3] |
Song G. L., Study on the Method of Arsenic Removal from Ultra⁃pure Hydrofluoric Acid, Tianjin University, Tianjin, 2003 |
| [4] |
宋桂兰. 超净高纯试剂氢氟酸除砷方法的研究, 天津: 天津大学, 2003 |
| [5] |
Pan S. Z., Organo⁃Fluorine Ind., 2009, (2), 45—47 |
| [6] |
潘绍忠. 有机氟工业, 2009, (2), 45—47 |
| [7] |
Hao J. T., China Nonferrous Metals, 2014, (24), 58—59 |
| [8] |
郝建堂. 中国有色金属, 2014, (24), 58—59 |
| [9] |
Zhu B. C., Zhang Z. C., Liaoning Chem. Ind., 2023, 52(8), 1217—1219 |
| [10] |
朱博超, 章志成. 辽宁化工, 2023, 52(8), 1217—1219 |
| [11] |
Liu Y. B., Guo Q. J., Yang H. C., Yi H., Song S. X., Mod. Chem. Res., 2024, (6), 9—11 |
| [12] |
刘禹博, 郭其景, 杨华春, 易浩, 宋少先. 当代化工研究, 2024, (6), 9—11 |
| [13] |
Su N., Zeng M. H., Yang H., Organo⁃Fluorine Ind., 2024, (2), 54—57 |
| [14] |
苏宁, 曾明辉, 杨宏. 有机氟工业, 2024, (2), 54—57 |
| [15] |
Zhao X. J., Zhang P., Wang Y. C., Chlor⁃Alkali Ind., 2018, 54(6), 26—27, 39 |
| [16] |
赵学军, 张鹏, 王玉成. 氯碱工业, 2018, 54(6), 26—27, 39 |
| [17] |
Peng F., Yang J., Wang X. M., Chem. Eng. Des. Commun., 2024, 50(9), 26—28 |
| [18] |
彭飞, 杨洁, 王雪梅. 化工设计通讯, 2024, 50(9), 26—28 |
| [19] |
Zhang Y. M., Henan Chem. Ind., 2023, 40(12), 34—37 |
| [20] |
张永明. 河南化工, 2023, 40(12), 34—37 |
| [21] |
Liu S. Z., Yang Y. Q., Wei L., Zhu J. J., Chem. Propellants Polym. Mater., 2014, 12(5), 56—58 |
| [22] |
刘少祯, 杨亚琴, 魏磊, 朱进京. 化学推进剂与高分子材料, 2014, 12(5), 56—58 |
| [23] |
Huang Z. Y., Li L., Xu H. Q., Yang Y. F., Wei Y. Y., Liu G. K., Xia Q. Y., Chem. J. Chinese Universities, 2025, 46(2), 20240430 |
| [24] |
黄智瑶, 李丽, 徐华卿, 杨一凡, 韦瑶瑶, 刘国魁, 夏其英. 高等学校化学学报, 2025, 46(2), 20240430 |
| [25] |
Zhang X., Chu W., Chen J. J., Dai X. Y., Acta Phys. Chim. Sin., 2009, 25, 451 |
| [26] |
张旭, 储伟, 陈建钧, 戴晓雁. 物理化学学报, 2009, 25, 451 |
| [27] |
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865 |
| [28] |
Liu Y. L., Exploring the Mechanism of Photocatalytic Toluene Oxidation on V6O13 Clusters Based on DFT Calculation, Hunan University, Changsha, 2023 |
| [29] |
刘玥岚. 基于V6O13团簇模型探索光催化甲苯氧化机理的DFT计算, 长沙: 湖南大学, 2023 |
| [30] |
Delley B. J., Chem. Phys., 2000, 113, 7756 |
| [31] |
Grimme S., Antony J., Ehrlich S., Krieg J., Chem. Phys., 2010, 132(15), 154104 |
| [32] |
Wang Y. L., First⁃principles Study of the Oxygen⁃doped Nature of ZnS and ZnTe, Tiangong University, Tianjin, 2023 |
| [33] |
王玉丽. ZnS及ZnTe掺氧性质的第一性原理研究, 天津: 天津工业大学, 2023 |
| [34] |
Cheng Y. J., First⁃principles Study of High Efficient Catalysts in Lithium⁃oxygen Batteries, Jilin University, Changchun, 2024 |
| [35] |
程莹洁. 锂⁃氧气电池高效催化剂的第一性原理计算研究, 长春: 吉林大学, 2024 |
| [36] |
Zhang J. F., Bai G., Xu Y. X., Wu W. Q., Liu Y., Teng B. T., Univ. Chem., 2022, 37(6), 158—164 |
| [37] |
章佳菲, 白鸽, 徐余幸, 吴文清, 刘亚, 滕波涛. 大学化学, 2022, 37(6), 158—164 |
| [38] |
Ni Z. M., Li Y., Shi W., Xue J. L., Liu J., Acta Phys. Chim. Sin., 2012, 28(9), 2051—2056 |
| [39] |
倪哲明, 李远, 施炜, 薛继龙, 刘娇. 物理化学学报, 2012, 28(9), 2051—2056 |
国家重点研发计划项目(2022YFC2904805)
/
| 〈 |
|
〉 |